RatBot: Anti-Enumeration Peer-to-Peer Botnets

Guanhua Yan', Songqing Chen?*, and Stephan Eidenbenz!

! Information Sciences (CCS-3)**
Los Alamos National Laboratory
2 Department of Computer Science
George Mason University

Abstract. As evidenced by the recent botnet turf war between SpyEye
and Zeus, the cyber space has been witnessing an increasing number of
battles or wars involving botnets among different groups, organizations,
or even countries. One important aspect of a cyber war is accurately
estimating the attack capacity of the enemy. Particularly, each party in
a botnet war would be interested in knowing how many compromised
machines his adversaries possess. Towards this end, a technique often
adopted is to infiltrate into an adversary’s botnet and enumerate ob-
served bots through active crawling or passive monitoring methods.

In this work, we study potential tactics that a botnet can deploy to
protect itself from being enumerated. More specifically, we are interested
in how a botnet owner can bluff the botnet size in order to intimidate
the adversary, gain media attention, or win a contract. We introduce
RatBot, a P2P botnet that is able to defeat existing botnet enumeration
methods. The key idea of RatBot is the existence of a fraction of bots
that are indistinguishable from their fake identities. RatBot prevents
adversaries from inferring its size even after its executables are fully
exposed. To study the practical feasibility of RatBot, we implement it
based on KAD, and use large-scale high-fidelity simulation to quantify
the estimation errors under diverse settings. The results show that a naive
enumeration technique can significantly overestimate the sizes of P2P
botnets. We further present a few countermeasures that can potentially
defeat RatBot’s anti-enumeration scheme.

1 Introduction

Due to its open nature, the cyber space has been witnessing a growing number
of battles or wars among different groups, organizations, or even countries. The
recent botnet turf war between SpyEye and Zeus fighting for bots [7] suggests
that botnets can play an important role in cyber warfare. In a real battle or war,
it is crucial for each party to know the attack capacities of his adversaries. Simi-
larly, in a cyber war involving botnets, a party would be interested in estimating
accurately how many compromised machines his opponents possess.

Currently, a commonly adopted approach to estimating botnet sizes is to
infiltrate into an adversary’s botnet and enumerate observed bots through ei-
ther active crawling or passive monitoring methods [13,12]. Different techniques

* Songqing Cher@This work] is partially supported by NSF grant CNS-0746649
and AFOSR grant FA9550-09-1-0071.
** Los Alamos National Laboratory Publication No. LA-UR 10-03929


sqchen
Sticky Note
please delete "[or This work]". 

Also, could you please reorder the two grant information to : .....AFOSR grant FA9550-09-1-0071 and NSF grant CNS-0746649.




have been used to enumerate existing botnets, such as the Storm botnet, and
they sometimes led to inconsistent results, spanning from 500,000 [13] to 50 mil-
lion [25]. Despite technical challenges such as NAT and DHCP that render it
difficult to estimate botnet sizes accurately, advanced techniques can be applied
to sift out these effects. For instance, the passive enumeration approach proposed
by Kang et al. can enumerate bots sitting behind a ﬁrevx%gr a NAT [13], and
the UDmap algorithm developed by Xie et al. [29] helps igating the effects
of dynamic IP addresses when enumerating bots based on their IP addresses.

In this work, however, we aim to address a more fundamental question: can
a botnet be intelligently designed so that accurately estimating its size is inher-
ently difficult? Particularly, we are interested in exploring potential tactics that
a botmaster can use to bluff his botnet size. In a cyber battle, overestimating
the size of the adversary’s botnet can lead to the effect of intimidation: a party
at a disadvantageous position can deploy this tactic to scare off a stronger oppo-
nent. In another example, a party can use this tactic to trick his adversary into
using an overly high amount of resources to defend against an attack launched
from one botnet so that he would hold advantage over his adversary in a differ-
ent cyber battle that takes place simultaneously. Furthermore, when two botnet
owners compete for the same customer who wants to use the larger botnet for,
say, spamming or DDoS attacks, one botnet owner may apply the bluffing tac-
tics to get the bid. Sometimes, a botnet owner may want his botnet size to be
overestimated so that he can draw some media attention.

To study the power of such bluffing tactics, we design a hypothetical botnet
called RatBot, which protects itself from being enumerated. RatBot employs the
peer-to-peer (P2P) structure to improve its resilience against a single point of
failure. The key idea of RatBot is the existence of a fraction of bots that are
indistinguishable from their fake identities, which are spoofing IP addresses they
use to hide themselves. RatBot prevents adversaries from inferring its size even
after its executables are fully exposed. This is done with heavy-tailed distribu-
tions to generate the number of fake identities for each bot so that the sum of
observed fake identities converges only slowly and thus has high variation.

Due to its anti-enumeration mechanism by design, RatBot distinguishes it-
self from those technical challenges (e.g., NAT and DHCP) making it difficult to
enumerate bots accurately and is thus immune to existing solutions that aim to
address these challeges. The wide deployment of NAT actually leads to underes-
timation of botnet sizes, which is contrary to the design goal of RatBot. Another
distinguishing feature is that the degree to which RatBot can bluff about its size
is controllable by the attacker. This is ideal in some situations (e.g., cyber war)
where the attacker wants to adjust his bluffing tactics dynamically.

To study the practical feasibility of RatBot, we implement it using the ac-
tual development code of aMule, a P2P client software that uses KAD for its
P2P communications [2]. We further develop a distributed simulation testbed
to evaluate the effectiveness of RatBot in misleading botnet size estimation. We
perform a variety of tests with different settings and the results show that a


sqchen
Sticky Note
helps mitigate ?



naive botnet enumeration approach by counting the IP addresses observed from
the P2P botnets could significantly overestimate their sizes.

The remainder of this paper is organized as follows. Section 2 presents related
work and Section 3 gives the threat model. In Section 4, we discuss the design
of RatBot, and provide the rationale of such design in Section 5. We introduce
the implementation of RatBot in Section 6 and use large-scale simulation to
evaluate its performance in Section 7. In Section 8, we further discuss potential
countermeasures against RatBot and draw concluding remarks in Section 9.

2 Related Work

Behaviors of real-world botnets have been analyzed to provide insights into how
botnets operate in reality [4,12,13]. Complementary to these efforts, our work
sheds light on the potential challenges regarding enumerating zombie machines
in P2P botnets accurately. In spirit, our work is similar to that of Rajab et
al. [18] as both explore the challenges of estimating botnet sizes, but ours focuses
on P2P botnets rather than IRC botnets. Some previous work has shown that
multiple factors contribute to inaccurate botnet size estimation, including DHCP
and NAT effects [24]. Our results show that even if advanced techniques are
deployed to sift out these effects [13,29], the botnet can still adopt sophisticated
obfuscation techniques to make it a difficult task to estimate its size accurately.

A plethora of botnet detection techniques have been developed recently. Gu et
al. have proposed a series of bot detection methods exploiting spatial-temporal
correlation inherent in bot activities [11,10]. Other botnet detection techniques
include DNS-based methods [19], ISP-level analysis [14], signature-based ap-
proaches [9], and flow-level aggregation and mining [31]. Our work is orthogonal
to these efforts and focuses on anti-enumeration tactics.

Hypothetical botnets proposed previously include Super-Botnet [27], Over-
bot [20], AntBot [30], and hybrid P2P botnets [28]. Our work differs from these
work on two aspects. First, our work focuses specifically on hypothetic P2P bot-
nets that aim to inflate the adversary’s estimation of botnet sizes. Second, we
have used large-scale high-fidelity simulation to quantify the estimation errors
under diverse settings rather than(;‘é_uj;nt the design from a conceptual level.

The design and implementation of RatBot presented in this work is based on
the Storm botnet, which used the KAD protocol. Besides the Storm botnet, a
few other botnets also applied the P2P protocol to organize their bots, such as

che [26], Waledac [23], and Conficker [17]. Although none of these botnets
E%Tapplied anti-enumeration techniques to inflate the number of bots they
have, some methods developed for RatBot can be borrowed to enhance their
resilience against enumeration by the adversaries. However, as we shall discuss
later, there is a tradeoff among operational flexibility, local detectability, and
resilience against enumeration in the design space of P2P botnets.

3 Threat Model

In this work, we consider two families of P2P botnets: immersive P2P botnets
and exclusive P2P botnets. For an immersive P2P botnet, the botmaster delivers


sqchen
Sticky Note
present or presenting ? 

sqchen
Sticky Note
have--> has


C&C information through a P2P network that has normal P2P nodes in ad-
dition to bots. The original Storm botnet, for instance, was an immersive P2P
botnet because the C&C information was delivered to the Storm bots through
the Overnet network. An exclusive P2P botnet, by contrast, has bots exclusively
as its peers and thus does not have any normal P2P user traffic in it. Since the
Overnet network was shut down, the Storm botnet became an exclusive P2P
botnet dubbed Stormnet because only bots can participate in the botnet.

The two primitive operations in a P2P network are publish and search. The
publish primitive is used to publish a data item either on the machine used
by the caller itself (e.g., in an unstructured P2P network) or on a machine
with an identifier that is close to that of the data object (e.g., in a structured
P2P network). The search primitive is used by a peer node to search for data
items that satisfy some specific conditions, such as containing certain keywords
or producing a certain hash digest. In this work, we assume that in the P2P
network search operations are spoofable, that is to say, a peer node can request a
peer to find a data item using a spoofed source IP address. This holds for many
P2P networks, which use UDP to implement the request/response mechanism in
a search operation. For instance, the widely deployed KAD protocol uses UDP
for signaling and TCP for data transfers [16].

It will be seen later that spoofable search operations play a key role in the
design of RatBot for hiding authentic search operations. It is, however, noted
that these constraints limit the design of RatBot only when it is implemented as
an immersive P2P botnet. For an exclusive P2P botnet, as bots do not require an
existing P2P network for their C&C communications, the botmaster has more
freedom on the implementation of spoofable search operations.

In this work, we assume a reasonable adversarial model from the attacker’s
standpoint. First, we do not assume that the P2P botnet deploys a strong au-
thentication scheme. As evidenced by previous efforts of successfully reverse-
engineering the Storm bot executable, it is possible for white-hat security ana-
lysts to reveal secret keys used for bot communications through static or dynamic
malware analysis, and create fake bots to infiltrate into the P2P botnet [12, 13].
Second, we also assume that the white-hat security analyst, through thorough
static code analysis, possesses full knowledge about the functionalities of an
authentic bot, including its communication protocol and anti-enumeration tech-
niques. Third, we assume that the behaviors of a fake bot and an authentic bot
are indistinguishable to the bots. A fake bot can intercept any message that
passes through it, thus obtaining the source IP address it has used. Fourth, a
fake bot may stay in the P2P botnet for a long time so that for some P2P pro-
tocols (e.g., KAD) a large number of peer nodes would add it to their contact
lists, or actively crawl the P2P network to obtain a list of observed P2P nodes.

In the paper, we use the adversary and the white-hat security analyst inter-
changeably. Next, we shall present the design of RatBot.

4 RatBot Design

The key idea of RatBot is the existence of an army of obscure bots, each of which
creates a list of fake identities to hide itself. In this work, we assume that the



identity of a bot is manifested as the IP address that it uses to communicate

with other peers in the network. Although the P2P identifier (e.g., KAD ID)

of a bot can also be used for enumeration purpose, these identifiers sometimes

can be changed by bots, thus leading to inaccurate estimate of the botnet size.

Moreover, a compromised machine can run multiple instances of bot executable

and counting each instance as a bot overestimates the size of a botnet. @
As opposed to obscure bots, we say the O e

Legend

remaining bots are explicit bots. By their na- © vomares
ture, explicit bots can be enumerated. In Fig- Yo o8
ure 1, we present the architecture of RatBot ®

in the form of an immersive P2P botnet. If
RatBot is an exclusive P2P botnet, no nor-
mal peers would exist.

i A B :
i 2 BisA'sneighbof

Fig. 1. RatBot Architecture
4.1 Obscure Bot Selection

When a machine is infected and becomes a bot, it decides whether it should
be an obscure bot. As an obscure bot uses spoofed IP packets to hide its true
identity, an obscure bot must be able to spoof IP packets. Not every end host in
the Internet, however, possesses such a capability due to reasons such as NAT
deployment and blocking of spoofed packets by firewalls or the host operating
systems [5]. We thus let each bot contact a dedicated server during its bootstrap-
ping phase. The server is hardcoded in the bot executable code®. When a bot
contacts a server, it generates a UDP query packet with an arbitrary spoofed
source; the payload of the packet carries the authentic IP address of the bot. If
the packet arrives at the server, it means that the bot is capable of spoofing. The
server decides whether the bot should become an obscure bot and if so, sends
back a response packet to the bot using its authentic IP address carried in the
query packet. If the bot receives the response packet within a certain period of
time, it becomes an obscure bot; otherwise, it is an explicit bot.

How does the server decide whether a bot should be an obscure bot? Suppose
that it knows the size of the current botnet; this can be done by simply letting
each newly infected bot report to it using their authentic IP addresses. The
server then makes its decision by aiming to have a fraction £ of the entire botnet
as obscure bots. £ is not hardcoded in the bot executable and it is thus not
known to the adversary. Hence, the adversary cannot estimate the botnet size
as m/(1 — &), where m is the number of explicit bots that he has observed.

4.2 Identity Obfuscation

Once a bot decides that it is an obscure bot, it randomly generates a list of
spoofing TP addresses that it will use to obfuscate its own IP address later in
P2P communications. The spoofing IP addresses should be chosen to be difficult
for the adversary to verify their validity, even if the adversary is able to reverse-
engineer the bot code. For example, these spoofing IP addresses should avoid

3 To improve the resilience of the botnet, multiple servers can be specified in the
executable code. Also, fast flux techniques can be used to prevent easy disruption.


sqchen
Sticky Note
Fig. 1. goes out of the boundary a little bit.


using those from the dark IP address space, and being too concentrated in a
small TP address subspace. The detail of such algorithm is beyond the scope
of this work. For a given obscure bot, how many spoofing IP addresses does it
create? The answer provides a key role in the level of difficulty for the adversary
to infer the correct botnet size. Consider a simple scheme in which each obscure
bot generates a constant number k of spoofing IP addresses. As explained later,
a distinguishing feature of an obscure bot is that it does not respond to any
request by another peer. Suppose that the adversary can enumerate the entire
list of IP addresses S that do not respond to any normal P2P requests. Then,
the number of obscure bots can be estimated at |S|/(k+ 1) if it is assumed that
spoofing IP addresses do not overlap.

Two observations are worth noting here. First, as obscure bots generate
spoofing IP addresses independently, these spoofing IP addresses may overlap in
practice. But given that the large IP address space to spoof, such overlapping
likelihood should be low. Second, due to the P2P structure of the botnet and
independent generation of spoofing IP addresses by individual bots, compromis-
ing a small number of bots, although helping the adversary rule out the spoofing
addresses used by these bots, does not prevent the overall size of the botnet from
still being overestimated.

We now discuss how RatBot chooses the number of spoofing IP addresses per
bot. Consider a botnet with n obscure bots. Let X; denote the number of spoofing
IP addresses obscure bot i generates. RatBot uses two levels of obfuscation. For
the level (distribution-level obfuscation), RatBot uses a distribution
Witl‘ﬁ%}\ variation to generate X, su((‘,lh as the Pareto distribution with PDF:

Fz) = ;’f% for £ > x,,,

0 for x <z,
where x,, and « are the cutoff and scale parameters, respectively. The mean of
the Pareto distribution is aa,, /(a—1) and its variance is (z,,/(a—1))%-a/(a—2).
It is noted that when o < 2, the variance becomes infinite. If we set a < 2,
then we cannot apply the central limit theorem on Y., X; due to the infinite
variance. It is noted that X; drawn from the Pareto distribution is a float number.
In practice, we generate | X;]| spoofing IP addresses for sure, where |z] denotes
the largest integer no greater than x, and an extra one with probability X;—| X .

In Section 5, we shall present the rationale behind using the Pareto distri-
bution for generating X; and also its limitation. To make size estimation even
more difficult, RatBot employs another level of obfuscation in generating X;
(parameter-level obfuscation). Instead of using a fixed mean for X;, the
mean of X; on the i-th obscure bot actually depends on certain attributes of the
bot itself. Measurements from the Storm botnet suggest that bot infection is not
uniformly distributed either over different ASes or geographically [6]. Hence, we
let the mean number of spoofing IP addresses generated by an obscure bot be a
function of the time zone where the bot is located. In previous works, security
analysts used the observed IP addresses to derive their geographic locations us-
ing IP geolocation tools [1] and thus their corresponding time zones. Now that
spoofed TP addresses are used, it is difficult to accurately infer the time zone of
each bot, which renders it hard to estimate the mean of each X;.


sqchen
Sticky Note
with a high variation


An obscure bot may use a dynamic IP address to communicate with other
peers. Whenever the obscure bot observes that the IP address of the hosting
machine has changed, it regenerates its spoofing IP addresses as above.

4.3 Bot Behavior Description

In a typical P2P protocol, a packet between two peers can be classified into three
categories: request, response, and data transfer. TCP makes spoofing difficult
because it requires handshaking between peers. In many normal P2P networks,
request and response signaling packets are delivered through UDP and data
transfer uses TCP. We consider the two cases in the following. (1) If the P2P
botnet is an exclusive P2P botnet, UDP can be chosen by design for delivering all
request, response and data transfer packets. (2) If the P2P botnet is an immersive
one, the botmaster does not have the freedom to choose the transport layer
protocol. In this study, we assume that request and response signaling packets use
UDP. If bot communications do not involve any data transfer packets, spoofing
becomes much easier; however, ifthe P2P protocol uses TCP for data transfer
and bots need data transfer for mand & control, it leaves a door for more
accurate bot size estimation by the adversary, as will be explained in Section 8.

For an explicit bot, its behavior conforms to the standard P2P protocol. For
an obscure bot b, let Z(b) denote the set of spoofing IP addresses associated with
it. The behaviors of an obscure bot are given as follows.

Response packets. An obscure bot does not respond to any request by
another peer. On the arrival of a request packet, it silently drops the packet. As
the packet is delivered through UDP, which is connectionless, the origin of the
request packet does not know whether the recipient receives the packet or not.

Request packets. We first consider a naive packet-level obfuscation scheme
for request packets. When an obscure bot b needs to send out a request packet to
peer A at time ¢, it replicates the packet for |Z(b)| times and each of these packets
uses a distinct source IP address from set Z(b). Including the original request
packet, there are in total |Z(b)|+ 1 packets to be sent to peer A. For each obscure
bot, we define its obfuscation window as w time units. We randomly reorder the
|Z(b)| + 1 packets as po, p1, ..., and pjz(y|- Packet po is sent out at time ¢. The
interval between the sending times of packet p; and p; 1 where i = 0,1, ..., |Z(b)]
is drawn from an exponential distribution with mean w/|Z(b)]|.

As the order of the packets is random, the recipient peer, if a monitoring node
by the adversary, cannot determine which packet carries the authentic source IP
address. However, every time a request packet with an authentic source IP is sent,
packets with all associated spoofing IP addresses are also sent to the recipient.
Hence, if the recipient is a monitoring node deployed by the adversary, she
can cluster IP addresses with the same (or approximately the same) number of
appearances within w time units. It is highly unlikely that source IP addresses
in normal request packets would show such strong correlation as in the naive
obfuscation scheme. As such, even though the adversary does not know exactly
which source IP address is authentic, he can still infer the actual size of the
botnet by assuming that IP addresses frequently appearing in the same interval
of w time units would come from the same obscure bot.


sqchen
Sticky Note
later, you used C&C information. Maybe you can change here to be consistent? 
or C&C messages.



It is noted that request packets are usually used by a bot to search for
C&C messages from the botmaster. Hence, to prevent correlation-based analysis,
RatBot uses a session-level obfuscation scheme for each search operation. Figure
2 illustrates the difference between packet-level and session-level obfuscation.
Suppose that an obscure bot needs to find a data item with key . We call it
an authentic session, which contains the whole sequence of the peer nodes this
bot has contacted in order to accomplish this search operation.

For each of its spoofing IP addresses, the obscure bot will create a spoofing
session, which contains a sequence of peer nodes that are randomly drawn from
a local peer node repository. This repository, denoted R, contains peers that
were observed in the past authentic sessions and also the current neighbors that
the obscure bot knows. It is noted that peers in an authentic session may appear
with a certain order. For instance, when a bot searches a data item with key IC
in a DHT P2P network, peers in the authentic session are ordered (or partially
ordered) in their distances from key ID K. Hence, when constructing the sequence
of peers in a spoofing session, such orders are also mimicked.

Source Sol

Destination| AJ[A[|A| i E
Destination|A| |C|

ertn swe [ [2
Destination E

Source
Destination Jd 99 [¢ Source EJE|E E E
l l l l Destination

Source
i E E E E P n
Destination Destination

time time

(1) Packet-level obfuscation (2) Session-level obfuscation

Fig. 2. Obfuscation comparison (In packet-level obfuscation, each authentic packet is
mized with a number of packets with spoofed sources but the same destination; in
session-level obfuscation, each authentic session is mired with a number of sessions
with spoofed sources and previously observed peers as destinations.)

The intervals between the starting times of sessions, including both authentic
and spoofing ones, are randomly drawn from an exponential distribution with
mean -y time units. The order of the starting times of spoofing sessions is ran-
domized. The authentic session is inserted among the top ¢ spoofing sessions,
if there are so many, and its place is also randomly chosen. The decision on ¢
should make it difficult to tell which session is authentic but meanwhile ensure
that the start of the authentic session would not be postponed significantly due
to obfuscation. In our implementation, we let ¢ be 5.

Let ¥ denote the empirical distribution of the number of request packets
sent in an authentic session. For each spoofing session, we use ¥ to generate the
number of request packets. Each of these request packet carries the spoofing IP
address as its source IP and search key IC, and is sent to every peer node in
the corresponding spoofing session. The interval between two request packets is
randomly drawn from the empirical distribution of the intervals between request
packets in the past authentic sessions. We use I to denote this distribution.



Data transfer packets. If botnet C&C information is stored as a file, each
bot needs to fetch the file from the host machine. If RatBot is designed to be an
exclusive P2P botnet, UDP can be chosen for data transfer. Otherwise, if it is an
immersive P2P botnet, RatBot makes its decisions in the following order: (1) If
the C&C information can be spread without involving data transfer, RatBot will
not use data transfer. For instance, C&C information can be stored as metadata
tags in a KAD-based P2P network. (2) If the P2P network allows U r data
transfer, RatBot will use UDP instead of TCP for data transfer. (3)]%3 if the
P2P network uses only TCP for data transfer, RatBot would use TCP. It is noted
that the third option exposes the identity of obscure bots if the peer hosting the
C&C information is actually a monitoring node deployed by the adversary. This
is because TCP requires a three-way handshake between the obscure bot and
thus the host machine and the connection cannot be spoofed.

5 Rationale

In this section, we explain why a high variance distribution such as the Pareto
distribution is used to generate X; in Section 4.2. As we assume an adversarial
model in which the adversary knows the distribution used to generated X;, we
must ensure that the adversary’s knowledge does not lead to a good estimation
of the botnet size. The adversary also knows that an observed IP address cannot
be from an explicit bot if it is used in response packets. Let M be the number
of IP addresses observed by the adversary that never respond to any requests.
The challenge is: can the adversary infer the number of obscure bots provided
that he knows the distribution used to generate X;7

If only the distribution-level obfuscation is used, all X; are independent and
identically-distributed random variables. According to the la large numbers,
i, X; always approaches ngu, where y is the mean of X, n n is large.
As the adversary knows the distribution and thus u, he can estimate the botnet
size as M/(p + 1). To defeat this type of inference, it is necessary to use a
distribution that converges so slowly that Y ., X; can still be far away from npu
at reasonable scales of botnet sizes.

The Chebyshev’s inequality tells us that P{|Y —Y| >t} <t 2Var(Y), where
Y and Var(Y) are the mean and variance of random variable Y, respectively.
Hence, the convergence speed of Z?:l X, is affected by the variation of X;. That
explains our choice of the Pareto distribution: for o < 2, its variation is infinite
and thus slows down the convergence of . | X;.

Suppose that there are 100,000 obscure bots and the average number of
spoofing IP addresses an obscure bot generates is 20. We consider four different
settings for the scale parameter: a = 1.01, 1.1, 1.5, and 1.8. We set the cutoff
parameter accordingly to obtain the same mean for X;. We simulate 1000 cases
with different random number generation seeds. In each case, we assume that
the adversary sees all the obscure and spoofed IP addresses. Let the observed
total number be M. The adversary estimates the number of actual obscure IP
addresses as M /21 as each obscure IP address has 20 spoofed ones. The following
table shows the mean and the standard deviation of the adversary’s estimation:


sqchen
Sticky Note
Two "Only" in this sentence, maybe delete the latter one?

sqchen
Sticky Note
do you want to emphasize this "when n is large"? maybe italic instead of "bold"?


2 1.01 11 15 [ 1.8
mean 23596.80(81758.83/99854.08(99962.19
standard deviation|83014.82|91258.15| 4553.54 | 1262.98

From the table, it is clear that when « is close to 1, the variability of the
estimated bot size becomes more significant. For instance, when « = 1.01, even
after 1000 sample runs, the derived mean is still far away from the actual one,
which is 100000. In reality, the adversary witnesses the result of only one sample;
hence, if « is small and thus the variability is very high, the adversary will get
an estimate on the botnet size with high variation.

Using heavy tailed distributions such as the Pareto distribution to generate
X, does have its limitation, even though they can produce highly variable results.
The high variation of these distributions actually results from their high skewness
in their probability density functions. Figure 3 depicts the probability density
function of the Pareto distribution when o = 1.01 and the mean is 20. Clearly,
it is highly skewed as P(X; < 1) = 0.805, which means that around 80% of the
data points, if drawn from this distribution, would stay below 1.

To see how this would help the adversary’s estimation, we simulate the ob-
served number of spoofing IPs when there are 1000, 10000, 100000, and 1000000
obscure bots. Each obscure bot uses the Pareto distribution with mean 20 and
scale parameter 1.01 to generate the number of spoofing IP addresses. For each
scenario, we simulate 1000 times. The results are shown in Figure 4, where each
data point represents the number of observed spoofing IPs. Note that for each
scenario, the number of observed spoofing IPs is highly clustered among the
1000 sample runs. Suppose that the adversary has observed 3000 spoofing IP
addresses. Then, he can infer that the real size of the botnet is likely to lie be-
tween 10000 and 100000. Hence, RatBot uses another level of obfuscation (i.e.,
parameter-level obfuscation) to defeat such kind of statistical inferences.

1le+08

1000000 spoofing IPs

100000 spoofing IPs

1e+07 10000 spoofing IPs

1000 spoofing IPs
fx i

1le+06

bae e bt e B et i

100000

10000

1000 8

100

Observed number of spoofing IPs

Probability density function f(x)
o - N w = ol (2]

10
0 1 2 3 4 5 0 200 400 600 800 1000

Sample run ID
Fig. 3. PDF of Pareto distribution Fig. 4. Observed spoofing IPs

6 Kad-Based RatBot Implementation

In this section, we discuss how to implement RatBot based on KAD, which ex-
tends from the Kademlia protocol proposed by Maymounkov and Mazieres [15].
Our implementation of RatBot is based on a popular KAD client, aMule*. UDP
is used in aMule for searching and publishing data objects. If it is an explicit bot,

4 The version we used in our study is aMule 2.1.3.



we keep the original implementation intact. Otherwise if it is an obscure bot, we
make the following modifications. First, when the bot receives a request mes-
sage, it drops the ge immediately. A request message in KAD carries some
special operation r[%:i, such as KADEMLIA HELLO REQ, KADEMLIA SEARCH_REQ,
KADEMLTIA REQ, KADEMLIA PUBLISH REQ, etc.

Second, in the KAD protocol peers regularly send KADEMLIA_HELLO_REQ mes-
sages to each other to exchange liveness information. It is noted that the adver-
sary can use such messages to determine whether a peer is an obscure bot or
just a spoofed IP address. There are two solutions to this. One option is that
the obscure bot obfuscates these messages as well, using spoofing IP addresses.
The flip side of this approach is that peers may inject those spoofed IP ad-
dresses into their routing tables, thus affecting normal routing operations. The
other solution is that an obscure bot does not send out such messages at all.
Even though obscure bots and their spoofed IP addresses may still be inserted
into their neighbors’ routing tables when their neighbors receive search requests
from them, the lack of liveness messages makes them less likely to be chosen in
a search process because KAD prefers long-lived nodes when forwarding search
requests. Also, when a peer node finds that a neighbor has not been alive for a
certain period of time, it removes that neighbor from its routing table. Given
these considerations, we adopt the second approach in our implementation.

Third, as obscure bots do not send out KADEMLIA_HELLO_REQ messages to their
peers, their peers do not send back response messages with type KADEMLIA HELLO -
According to the standard KAD protocol, obscure bots’ routing tables would
shrink faster because neighbors without liveness messages are removed from
the routing table after a certain period of time. To avoid this, we increase the
longevity of each neighbor without liveness messages in an obscure bot’s routing
table from the original two minutes to two hou

Fourth, a KAD node initiates some random hes when it observes that a
bucket does not have enough contacts in its routing table. For an obscure bot,
it has to use its authentic IP address for such random lookups. It is necessary to
obfuscate these searches also, because otherwise the adversary can infer whether
an observed IP address is authentic or not by how many unique keys it uses for
searching. In our implementation, we obfuscate these random searches as well.

Finally, we let RatBot use the metadata tags in KAD, such as filenames, to
hide C&C information. Hence, no data transfer is needed for normal bot opera-
tions. Also, obscure bots never publish any information into the P2P network;
they only passively search commands given from the botmaster. The botmaster
uses only explicit bots to publish his C&C information.

7 Experimental Evaluation

We now evaluate the effectiveness of RatBot in preventing the adversary from
obtaining an accurate estimate on the botnet size. Due to the destructive nature
of RatBot, we do this in a simulated environment to avoid legal and ethical is-
sues. Our KAD-based implementation of RatBot used the actual implementation
code of aMule. We further intercepted all system calls in it, such as time-related
and socket functions and replaced them with simulated function calls specific to


sqchen
Sticky Note
by codes, you meant types?

sqchen
Sticky Note
out of boundary

sqchen
Sticky Note
searches --> search operations? 


our local distributed simulation platform. According to the literature, behaviors
of both normal P2P users and bots exhibit strong time zone effects [21, 8]. To in-
corporate these details into our simulation, we model the geographic distribution
of normal KAD peers based on previous measurements on the KAD network [21]
and that of bots according to the Storm botnet IP distribution [6].

Our model of normal P2P user behaviors is based on the observations on the
online patterns of normal KAD users [22]. The starting time of a normal peer
being online is modeled with a Gaussian distribution with mean at 7:00pm and
standard deviation at 2 hours, and the duration of an online session is generated
with a three-parameter Weibull distribution. The online activity model of a bot
machine is simply defined as follows: the starting time of it being online is drawn
from a Gaussian distribution with mean at 8:00am and the end time is drawn
from a Gaussian distribution with mean at 6:00pm; for both distributions, the
standard deviation is one hour. This model reflects people’s normal work hours.

The number of spoofing IP addresses corresponding to an obscure bot is
generated from a Pareto distribution whose parameters are set as follows. Let us
number the 24 time zones from 1 to 24. The mean of the Pareto distribution is
drawn from a Gaussian distribution with mean and standard deviation set as 2z
and 4z, respectively, where z is the time zone number of the obscure bot. The
scale parameter of the Pareto distribution is 1.05 and its cutoff parameter can
be calculated accordingly from its mean. In each experiment of this study, we
use 100 processors from a cluster machine to simulate the behaviors of RatBot.

7.1 Exclusive RatBot

In the first set of experiments, we study the behavior dynamics of exclusive
RatBots. We let the botmaster send out a command every day. To improve the
reachability of the command to individual bots, the botmaster uses five bots to
publish it with 32 keys (as in the Storm botnet) periodically every 100 seconds.
Each individual bot, when online, periodically searches the command every 100
seconds with these 32 keys until it gets the command successfully. We simulate
10,000 bots and vary the number of obscure bots among {1000 X };=0,1,2.3,4,5-
Among the 10,000 bots, 10% of them are P2P servers that always stay online.
We assume an adversarial model in which the adversary controls 10 servers
that can be used to monitor bot traffic. We simulate the botnet for two days:
the first day is used as a ramp-up phase for each obscure bot to obtain some
empirical distributions, and the second day is used for testing. For each scenario,
we simulate it for 20 times with different random number seeds.

We first verify our implementation to ensure that behaviors of spoofing ses-
sions are close to those of authentic sessions. In Figure 5, we depict the frequency
histogram of the number of appearances of packets from spoofing and authentic
sessions observed by the monitors, respectively, in five runs when there are 1000
obscure bots. There is no obvious systematic difference between authentic and
spoofing sessions that can be exploited to differentiate them. From the simula-
tion results, we also note that regardless of the number of obscure bots in the
RatBot, almost every individual bot gets the command eventually. Hence, the
existence of obscure bots does not affect the utility of the P2P botnet.



Figure 6 gives the median, smallest, and largest number of IP addresses
observed by the adversary in 20 sample runs eventually and after one day, re-
spectively, under different number of obscure bots. In the eventual results, we
show the total number of spoofing IP addresses generated by obscure bots plus
the number of actual bots. We notice that after one day, the adversary observes
a large fraction of both actual and spoofing IP addresses. This is because we
assume the adversary is able to deploy monitors among the core servers of the
P2P botnet and the bots search the command frequently.

5 Run 1, authéntic, no shit —— 140000 120000

120000 t [ 100000 |+

100000

80000 [+

%
*
=]

=

-8
o
-
"

80000

is) —v—

60000

40000 ]]; T

20000

Frequency
(after one day)

. Run 5, authentic, shift b
- \ Run 5, spoofing, shift

60000

T
40000 +

20000

Total number of bots observed
(eventually)
4
Total number of bots

0 0 -
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of obscure bots Number of obscure bots

(1) Eventual results (2) One-day results

0
0-9 1019 2029 30-39 4049  50-59  60-69
Number of appearances

Fig. 5. Frequency histogram of
the number of appearances in Fig. 6. Total number of bots observed by the monitors, includ-

five runs ing explicit, obscure, and spoofing bots

Unsurprisingly, if we increase the number of obscure bots, the number of ob-
served IP addresses by the adversary also increases. When there are 4000 or 5000
obscure bots, there are cases where the total number of IP addresses observed
by the adversary exceeds 100,000, suggesting that the obfuscation technique of
RatBot can lead to an overestimation more than 10 times of its actual size. On
the other hand, given the same number of obscure bots, the observed number of
IP addresses also varies significantly among different runs. In some scenarios, the
largest number of IP addresses observed is twice as much as the smallest number
of TP address observed in the 20 sample runs. It is also noted that the median
tends to be close to the minimum due to the fact that the Pareto distribution is
skewed towards its cutoff parameter at its lower end.

7.2 Immersive RatBot

We now evaluate how immersive RatBot affects the accuracy of botnet size esti-
mation. We simulate a P2P network with 7,000 normal peers and 3,000 bots. The
botmaster uses five bots to publish commands with 32 keys periodically every
half hour. Each bot uses these 32 keys to search for the current command every
half hour until it obtains the command successfully. Here, we let bots perform
publish and search operations less frequently than those in exclusive RatBot
because normal P2P peers may treat these bots performing frequent operations
as abnormal and thus limit interations with them. Among 7,000 normal peers,
990 of them always stay online as servers. We assume the advers eploys 10
monitors in the network and they appear as servers always online. monitor
is also a captured bot and can be used to reveal the 32 keys used by the bots to
search the current command. The monitor identifies a peer as a bot if it observes
that the peer uses any of these keys to search or publish a data item in the P2P


sqchen
Sticky Note
Out of boundary. 

sqchen
Sticky Note
You meant each captured bot is also a monitor?


network. We vary the number of obscure bots among 0, 1000, 2000, and 3000.
For each scenario, we simulate it for four days, the first of which is used as a
ramp-up phase for each obscure bot to obtain some empirical distributions and
the remaining days are used for testing. We simulate each scenario 20 times.
Figure 7 depicts the number of bots ob-
served by the adversary under different num- 70000 After one Gy =
bers of obscure bots. For visual clarity, we 60000 Af‘:é‘?{g%gg:%z T
shift the points horizontally slightly to pre- N
vent overlapping. For each scenario, we show !
the median, minimum, and maximum among zzzzz * F |
the 20 sample runs. The results correspond- 10000 4 f I
ing to “Eventually” show the sum of both the o Lxe f
number of authentic bots (including obscure O e o 2000 %000
bots) and the total number of spoofing IP
addresses generated by all obscure bots. Fig. 7. Number of bots observed by
According to the results, we make the fol- monitors under different numbers of
lowing observations. First, the existence of obscure bots (0, 1000, 2000, 3000)
obscure bots produces estimated botnet sizes
with high variation. For instance, after three days, if there are no obscure bots,
the ratio of the maximum and the minimum of observed bots is 1.016; when we
introduce 1000, 2000, and 3000 obscure bots, the ratio becomes 3.405, 2.637, and
2.006, respectively. Such high variation renders it difficult for the adversary to
infer the true size of the botnet. Second, it is obvious that increasing the num-
ber of obscure bots helps inflate the number of observed bots by the adversary.
When there are 1000 obscure bots, the ratio of the median number of observed
bots after three days to the true size of the botnet is only 4.5, but when there
are 3000 obscure bots, this number becomes 12.8. Hence, the botmater can use
the fraction of obscure bots to control the error in the adversary’s estimation.

50000

40000

Number of observed bots

8 Countermeasures

Given the disruptive nature of RatBot, it is important for us to understand
its weakness and potential methods to mitigate it. In this section, we present
a few countermeasures that can defeat the obfuscation techniques deployed by
RatBot. First, RatBot requires each bot to contact a central server initially to
decide whether it should work as an obscure bot. The server can easily become a
single point of failure. If the adversary manages to monitor traffic from and/or to
this server, the identities of true bots can be revealed. With regard to this, it is
noted that each bot only needs to contact this server during the bootstrapping
phase. As there is little communication for this purpose, it is a difficult task
to monitor such traffic. Moreover, existing botnets commonly apply distributed
server farms and fast-flux techniques to improve resilience of their services. These
techniques can also be applied here to prevent the single failure of the server.
In order for RatBot to operate, the search operation must be spoofable.
Hence, if a P2P network deploys anti-spoofing techniques, RatBot cannot survive
in it. For example, the P2P network can simply use TCP for all signaling and
data transfers. Even if UDP is used for signaling, the P2P network can add a



level of anti-spoofing mechanism in a query: when Peer A receives a query from
Peer B, it sends back a confirmation request to Peer B and only answers Peer
B’s query after receiving a reply from Peer B on its request. It is noted that
this countermeasure works only against immersive RatBot because the botnet
has to be blended into an existing P2P network. Albeit effective in defeating the
anti-enumeration scheme by RatBot, fully deploying anti-spoofing techniques in
all enterprise networks and ISPs still has a long way to go [5]. For instance, the
recent analysis of 5,000 DDoS attacks suggests that a significant fraction of them
still used spoofing techniques to generate large volumes of attack traffic [3].

If the RatBot needs TCP data transfer to fetch the command, the adversary
can deploy monitors in the P2P network and place those command data on
them. By monitoring which machines fetch the command data, the adversary
can obtain a list of authentic bots as the three-way handshaking mechanism in
TCP cannot be spoofed with spurious IP addresses.

Another effective approach to defeat RatBot is deploying anti-spoofing tech-
niques in the whole Internet. The degree to which the RatBot can obfuscate its
size depends on how many obscure bots it has to perform spoofing operations. If
the majority of Internet addresses cannot be spoofed, we can still obtain a good
estimate on the size of RatBot by simply ignoring those obscure bots.

RatBot’s relying on spoofing packets for obfuscation introduces another weak-
ness: enterprise networks and ISPs can detect the existence of bots in their
networks by looking for hosts that send out spoofed packets. RatBot prevents
enumeration by the adversary at the global level at the price of increased vul-
nerability to detection at the local level due to its use of spoofing packets.

9 Conclusions

In recent years, botnets, which emerge as a major cyber threat, have been widely
used to send spamming emails and launch DDoS attacks. In a botnet war, a bot-
net owner may want to bluff his botnet size in order to intimidate the adversary,
gain media attention, or win a contract. In this work, we explore the tactics
that a botnet may use to achieve this goal. We present the design of a type
of P2P botnets called RatBot, which applies obfuscation techniques to defeat
standard enumeration techniques, and use large-scale high-fidelity simulation to
evaluate its performance. We hope our work will raise the awareness of white-hat
cyber-security practitioners on the challenges of estimating the sizes of botnets
accurately and adopt effective countermeasures in practice.

References

1. http://www.ip2location.com/.

2. http://www.amule.org.

3. http://asert.arbornetworks.com/2010/12/the-internet-goes-to-war/.

4. P. Barford and V. Yegneswaran. Malware Detection, volume 27 of Advances in

Information Security, chapter An Inside Look at Botnets. Springer US, 2007.
5. R. Beverly, A. Berger, Y. Hyun, and k claffy. Understanding the efficacy of deployed
Internet source address validation filtering. In Proceedings of ACM IMC’09, 2009.
6. http://isisblogs.poly.edu/2008/05/19/storm-worm-ip-list-and-country-
distribution-statistics.



~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

http://www.net-security.org/secworld.php?id=8858.

D. Dagon, C. C. Zou, and W. Lee. Modeling botnet propagation using time zones.
In Proceedings of NDSS’06.

J. Goebel and T. Holz. Rishi: identify bot contaminated hosts by IRC nickname
evaluation. In Proceedings of HotBots’07, 2007.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In Proceedings of
USENIX Security’08, 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting
malware infection through ids-driven dialog correlation. In USENIX Security’07.
T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements and
mitigation of peer-to-peer-based botnets: a case study on storm worm. In LEET’08.
B. B. Kang, E. Chan-Tin, C. P. Lee, J. Tyra, H. J. Kang, C. Nunnery, Z. Wadler,
G. Sinclair, N. Hopper, D. Dagon, and Y. Kim. Towards complete node enumera-
tion in a peer-to-peer botnet. In Proceedings of ACM ASIACCS’09, 2009.

A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and
characterization. In Proceedings of HotBots 07, 2007.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the XOR metric. In Proceedings of IPTPS’01.

M. Pietrzyk, G. Urvoy-Keller, and J.-L. Costeux. Digging into kad users’ shared
folders. In Posters of ACM SIGCOMM’08, 2008.

P. Porras, H. Saidi, and V. Yegneswaran. Conficker C P2P protocol and imple-
mentation. http://mtc.sri.com/Conficker/P2P/, September 2009.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My botnet is bigger than yours
(maybe, better than yours): why size estimates remain challenging. In HotBots 07.
A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet membership
using dnsbl counter-intelligence. In Proceedings of SRUTI’06, 2006.

G. Starnberger, C. Kruegel, and E. Kirda. Overbot: a botnet protocol based on
kademlia. In Proceedings of SecureComm’08, 2008.

M. Steiner, T. En-Najjary, and E. W. Biersack. A global view of kad. In IMC’07.
M. Steiner, T. En-Najjary, and E. W. Biersack. Analyzing peer behavior in kad.
Technical Report EURECOM+2358, Institut Eurecom, France, October 2007.

B. Stock, J. Gobel, M. Engelberth, F. C. Freiling, and T. Holz. Walowdac - analysis
of a peer-to-peer botnet. In Proceedings of the 2009 FEuropean Conference on
Computer Network Defense, 2009.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
C. Kruegel, and G. Vigna. Your botnet is my botnet: Analysis of a botnet takeover.
In Proceedings of the ACM CCS’09, 2009.
http://www.neoseeker.com/news/7103-worm-storm-gathers-strength/.

S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich. Analysis of the storm and
nugache trojans: P2p is here. ;Login:, 32(6), December 2007.

R. Vogt, J. Aycock, and M. J. Jacobson. Army of botnets. In NDSS’07, 2007.

P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid peer-to-peer botnet. In
Proceedings of HotBots’ 07.

Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wobber. How dynamic
are ip addresses? In Proceedings of ACM SIGCOMM’07, 2007.

G. Yan, D. T. Ha, and S. Eidenbenz. Antbot: Anti-pollution peer-to-peer botnets.
Computer Networks, 55(8), June 2011.

T.-F. Yen and M. K. Reiter. Traffic aggregation for malware detection. In Pro-
ceedings of DIMVA’08, 2008.



