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Forecasting dust storms for large geographical areas with high resolution poses great
challenges for scientific and computational research. Limitations of computing power
and the scalability of parallel systems preclude an immediate solution to such chal-
lenges. This article reports our research on using adaptively coupled models to resolve
the computational challenges and enable the computability of dust storm forecasting
by dividing the large geographical domain into multiple subdomains based on spa-
tiotemporal distributions of the dust storm. A dust storm model (Eta-8bin) performs
a quick forecasting with low resolution (22 km) to identify potential hotspots with high
dust concentration. A finer model, non-hydrostatic mesoscale model (NMM-dust) per-
forms high-resolution (3 km) forecasting over the much smaller hotspots in parallel to
reduce computational requirements and computing time. We also adopted spatiotempo-
ral principles among computing resources and subdomains to optimize parallel systems
and improve the performance of high-resolution NMM-dust model. This research
enabled the computability of high-resolution, large-area dust storm forecasting using
the adaptively coupled execution of the two models Eta-8bin and NMM-dust.

Keywords: parallel computing; Cyber GIS; atmospheric modelling; nested models;
computing intensity; applied sciences; geospatial platform; spatiotemporal thinking and
computing

1. Introduction

Dust storms are the result of strong turbulent wind systems entraining particles of dust
into the air, reducing visibility down from miles to several meters (Goudie and Middleton
1992). Global climate change has driven up the frequency and intensity of dust storms in
the past decades with negative consequences on the environment, human health, and assets.
For example, dust storms (1) contain marine nutrients, such as active iron and phosphorus,
which can result in algal blooms over the ocean surface when decomposing into the ocean
water (Dulac et al. 1996); (2) act as a pollutant which reduces air quality and affects public
health by causing allergies, respiratory diseases, and eye infections (Nickling and Gillies
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1993); and (3) impact both the environment and climate from regional to global scale
(Sokolik and Toon 1996, Gong et al. 2003) by causing the cooling of oceans through
reflecting solar radiation back to space (Gong et al. 2003) and contributing to global aerosol
mass load and optical thickness (Gong et al. 2003), where a dust-laden atmosphere with an
average optical thickness of 0.5 would cause a net radiative forcing of +20 to +40 W/m2

over arid regions and −5 to −15 W/m2 over the ocean (Sokolik and Toon 1996).
The severe impacts of dust storms on our environment have motivated scientists to

develop dust models for (1) predicting dust storms; (2) understanding dust processes;
(3) quantifying the global dust cycle; and (4) re-constructing past climates (Shao and Dong
2006). Since the late 1980s, several research groups have developed dust models that can
correctly predict spatiotemporal patterns, evolution, and order of magnitude of dust con-
centration, emissions, and deposition (e.g. Westphal et al. 1988, Gong et al. 2003, Shao
et al. 2007, Han et al. 2004).

However, utilizing those existing models to predict high-resolution dust storms poses
several critical challenges:

(1) Simulating dust storm phenomena is very complex and computing intensive (Xie
et al. 2010). Such a periodic phenomenon simulation requires the iteration of
computing-intensive numerical equations for many times. For a given domain size,
the computing cost of an atmospheric model is a function of n4, where n is the grid
dimension, including two horizontal dimensions, one vertical dimension, and one
time dimension (Baillie et al. 1997). Therefore, doubling the geographic domain
on the horizontal direction would result in a fourfold increase in the computing
cost. Halving the spatial resolution only could result in an eightfold increase in
the computing cost because it would also require halving the time-step to keep the
model accuracy (Baillie et al. 1997).

(2) Dust storm forecasting is a time-critical task that requires a limited computing
time. For example, a 2-hour computing limit is recommended for 1-day fore-
casting to make the results useful (Drake and Foster 1995). Limited geographic
domain and/or resolution forecasting is usually performed to complete the sim-
ulations within the time limit (Wolters et al. 1995). However, a postcode-level
resolution is needed for dust storm forecasting to support decision-making, such
as preparing medications in public health (Yang et al. 2008). Figure 1 shows the
computing time required for a 24-hour forecasting over different domain sizes on
the horizontal directions and with the same vertical layers (37 layers) and spatial
resolution (3 km). More than 7.5 hours are needed to forecast a 10 × 10 degree
domain size using cutting-edge hardware configuration (Yang et al. 2011a). Based
on the computing cost of an atmospheric model and computing requirement trends
(Figure 1), forecasting the whole southwest United States with a domain size of
37 × 20 degree would require about 60 hours. Such a computing performance is
not acceptable because we would be forecasting yesterday.

The limitation of computing power precludes a direct solution to complete the south-
west United States high-resolution forecasting within reasonable time constraints (Huang
2011), and more efficient computing strategies should be explored (Kuligowski and
Barros 1999). One solution is to embed a finer-resolution subdomain or succession of
subdomains within the entire domain with lower resolution to enhance the resolution
over specific areas of interest while moderating the required computing cost (Anthes
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Figure 1. Execution time for different geographic domain forecasts.

1983, Kuligowski and Barros 1999). Such an approach is called nested models or, more
commonly, high-resolution limited area models.

Generally, nested models require a priori knowledge of where to place the high-
resolution subdomains inside the entire domain (Constantinescu et al. 2008). For a
real-time dust storm forecasting system, users are not aware of where the dust storm will
occur, and therefore traditional tightly coupled nesting approach is not suitable. In addition,
finer-scale module and coarse-scale module are tightly coupled to execute concurrently and
extensive efforts are required to enable the two modules to be coupled together (Michalakes
et al. 1998). We propose a loosely adaptively coupled solution to overcome this issue. In the
adaptive loosely coupled approach, a coarse dust storm model (Eta-8bin) is first executed
with low spatial resolution (22 km) to identify potential dust event areas. Afterwards, a
finer model, NMM-dust, will run with higher resolution (3 km) for those potential areas
on different groups of computing resources with each group performing one subdomain
forecasting. This way, simulation of each subdomain with much smaller size can be com-
pleted with much less computing cost and without too much extra efforts to modify the
two models.

In this article, NMM-dust model is used to produce high-resolution results for weather
forecasting executed in parallel. High-performance computing (HPC, Armstrong et al.
2005) or grid computing (Yang et al. 2008) have been used to address the increasing
computing need in geographic science problems and enable a lot of research and geospa-
tial applications, such as dust storm simulation (Xie et al. 2010) and digital elevation
model (DEM) interpolation (Huang and Yang 2010). However, in parallelized HPC or grid
computing environments, communication (Drake and Foster 1995, Sterling et al. 1995),
synchronization, and load balance (Yang et al. 2011a) are potential bottlenecks in the
overall performance.

One possible direction for reducing communication overhead of HPC systems is to
optimize the configuration and scheduling of the parallel system based on the spatio-
temporal relations and principles among the computing resources and phenomena (Huang
and Yang 2010). Yang et al. (2011a) provided a general guide about how to discover
the spatiotemporal principles with several examples to improve the performance of dust
storm simulation. This article builds upon but significantly enhances that research to better
explore and improve HPC by using spatiotemporal patterns and constraints.

Section 2 reviews related research on loosely adaptively coupled models and HPC sup-
port for dust storm forecasting. Section 3 introduces the methodology, including adaptive
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loosely coupled models and HPC performance improvement strategies based on spatiotem-
poral principles. Section 4 presents and analyses the experiments of loosely coupled nested
models, and scheduling strategies of computing resources (CPU and storage) to demon-
strate how to improve the performance based on these strategies. Finally, in Section 5, we
demonstrate that our approach can provide a potential solution to complete the computa-
tion of dust storm forecasting for large areas and high resolution within acceptable time
frame.

2. Related work

2.1. Nested models

Nested models are able to properly simulate and predict spatial features and resolve pro-
cesses with small scales on subdomains of a big domain with higher resolution. Therefore,
to produce the regional high-resolution simulation results without the enormous comput-
ing cost of a global model at the high resolution, nested models are used for a variety of
research and operational applications (Ramón et al. 2002). For example, nested models are
greatly used in the research on chemical transport and decomposing process over the atmo-
sphere (Pleim et al. 1991), regional air pollution (Constantinescu et al. 2008), regional and
global weather and climate pattern analyses (Giorgi et al. 1996, McGregor 1997, Fennessy
and Shukla 2000, Ramón et al. 2002, Jasper et al. 2002).

However, most models are developed and nested in a ‘static tightly coupled’ approach
(Sela 1980, Giorgi et al. 1996, McGregor 1997, Fennessy and Shukla 2000, Nellson
et al. 2005). Within the static tightly coupled approach, a high-resolution module could
be one way, two way, or even triple way nested with a low-resolution module and both
are executed at the same time (Fennessy and Shukla 2000). For example, a subdomain,
high-resolution atmospheric module (with 80 km resolution) was nested in the Center for
Ocean-Land-Atmosphere Studies (COLA) global general circulations module (GCM; Sela
1980) (with 1.88 × 2.88 degree spatial resolution) for seasonal climate prediction over
North America (Fennessy and Shukla 2000). Extensive modifications of both modules are
required to make them ready for nesting because of inconsistent subroutine interfaces, def-
inition of physical constants, data structures, and other problems (Michalakes et al. 1998).
In addition, nesting of finer subdomain into coarser domain requires a priori knowledge
of where inside the modelling domain to place the finer subdomain (Constantinescu et al.
2008). For instance, at Norwegian Meteorological Institute (DNMI), the fifth-generation
Mesoscale Model (MM5) is nested with High Resolution Limited Area Model (HIRLAM).
A subdomain with 3 km resolution was statically set up for the Oslo region for nesting with
MM5 (Baklanov et al. 2002).

For a real-time dust-storm prediction system, users are not aware of where the dust
storm will occur. Therefore, the traditionally static tightly coupled nested approach is not
suitable for the sporadic event forecasting, and adaptively adjusting the high-resolution
subdomains should be required for dust storm simulation. Some studies have been con-
ducted to perform adaptive atmospheric modelling where different subdomains are able to
be computed with different spatial resolutions dynamically during the simulations (Hart
et al. 1998, Borthwick et al. 2000, Constantinescu et al. 2008). Those adaptive approaches
use refinement criteria to adaptively control the high-resolution subdomain placement.
However, the success of those approaches depends on the design of the refinement cri-
teria which can highly influence the model’s accuracy (Constantinescu et al. 2008). Also,
there is an overhead associated with the management of the non-uniform subdomains by
interpolating the solution between different resolution levels (Constantinescu et al. 2008).
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This research will investigate how to integrate multi-resolution models to tackle
the computing challenges of complex problems in an ‘adaptive loosely coupled nested’
manner. Within this approach, the high-resolution model will adaptively perform the fore-
casting over the areas that have potential dust events and are identified by the coarse model
results. This approach can resolve the computing demands of large scale problems effi-
ciently without or with only slight modification to the original models. In addition, this
approach would greatly promote the research of communication and integration of differ-
ent models, be easily applied to other research, e.g. air quality, and contribute to flexible
and extensible global modelling framework.

2.2. High-performance computing for dust storm forecasting

2.2.1. Parallelization of dust storm models

Dust storm models are developed by adding dust solvers into the regional atmospheric
models (Nickovic et al. 1997, Shao et al. 2007). Dust storm models parallelization is to
parallelize the kernel atmospheric modules. The atmosphere is modelled by dividing the
study area into three-dimensional spatial cells and atmospheric modelling is the process
to solve a system of coupled non-linear partial differential equations on each cell with
appropriate boundary conditions (Purohit et al. 1999). The calculations of the equations
on each cell are repeated with a time-step to model phenomena evolution. Therefore, the
computing cost of an atmospheric model is a function of the number of cells in the domain
and the number of time-steps (Baillie et al. 1997).

Parallel computing architectures are greatly used as an instrumental mechanism for
the execution of atmospheric phenomena simulation (Jin et al. 2003), such as Eta Model
(Henderson et al. 1994), Rapid Update Cycle (RUC) (Rodriguez et al. 1995), Quasi Non-
Hydrostatic meteorological model (QNH) (Baillie et al. 1995), HIRLAM (Wolters et al.
1995), MM5 (Davis et al. 1999), Advanced Regional Prediction System (ARPS) (Xue
et al. 2003), and Regional Atmospheric Modeling System (RAMS) (Cotton et al. 2003).
HPC and computing advancements made by faster Central Processing Units (CPUs) allow
modern Numerical Weather Prediction (NWP) models to reach a very high resolution (e.g.
Davis et al. 1999). For example, MM5 has been used for real-time weather prediction at a
resolution of 1 km by the US Army Test and Evaluation Command (Davis et al. 1999).

An atmospheric model performs essentially the same set of computations in each sim-
ulation cell within the domain. Normally, a Single Program Multiple Data stream (SPMD)
domain decomposition approach and nearest neighbour communication in the physical
subdomains is required (Nanjundiah 1998). Data dependencies between neighbouring cells
in the vertical direction are much larger than that in the horizontal directions. Horizontal
decomposition in the model is usually used to minimize communication overhead (Wolters
et al. 1995). The communication includes halo exchanges, periodic boundary updates, par-
allel transposes, and others. The halo region is the part of the local memory allocated
around a cell for exchanging information with neighbouring cells using message passing.
The process of data decomposition should define the halo regions assigned to each pro-
cessor and also define a virtual array of processors used to execute these subdomains and
create neighbourhood relations between subdomains.

2.2.2. Performance improvement

Performance improvement of parallel systems has been studied by improving the data
structure, algorithm, libraries for parallelization, and compiler for code compilation
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(Rodriguez et al. 1995, 1996). Rodriguez et al. (1995) studied and compared the
performance issues in the parallelization of weather prediction models using two differ-
ent parallelization libraries. He also discussed optimization strategies for parallel systems
by using redundant computations to minimize the data exchanges (Rodriguez et al. 1996).
Baer and Zhang (1998) proposed to reconstruct the prediction equations in a format that
will allow a longer time-step without loss of accuracy.

In addition to modifying, constraining, and reengineering the application architecture
and algorithms, an HPC supporting geospatial sciences should leverage spatiotemporal
principles and constraints to better optimize and utilize HPC in a spatiotemporal fashion
(Calstroka and Waston 2010, Yang et al. 2011a). Earlier investigations found that not only
can HPC be used to support geospatial sciences, but it can also be optimized with spa-
tiotemporal principles to best utilize available distributed computing resources (Yang et al.
2011b). Yang et al. (2011a) demonstrated that spatiotemporal principles can be used to bet-
ter parallelize models, arrange the computing resources based on the spatiotemporal scales
and spatial resolution, and select the computing resources based on the network connection
and topology. In this article, more spatiotemporal patterns and examples are explored and
employed to improve the HPC performance for enabling the computability of dust storm
forecasting.

3. Methodology

3.1. Adaptive loosely coupled strategy

Several numerical dust models have been proposed and developed. The Dust Regional
Atmospheric Model (DREAM) (Nickovic et al. 2001), designed to simulate dust entrain-
ment and transport on a regional scale, is widely used for dust cycle modelling systems.
DREAM can be easily configured and incorporated into other atmospheric models.
For instance, it has been successfully coupled with National Centers for Environmental
Prediction (NCEP)/Eta as both the Eta-4bin (four particle-size classes) and the Eta-8bin
(eight particle-size classes) dust forecast models to simulate the dust cycle in the atmo-
sphere. The performance of the system has been tested for a variety of dust storm episodes
in a variety of locations and resolutions.

The Eta-8bin model has shown considerable potential in forecasting severe storms.
However, the Eta-8bin model runs in sequence rather than in parallel (Xie et al. 2010), and
the model has a coarse spatial resolution of 1/3 degree that cannot be used for many appli-
cations. With current required horizontal resolutions, for example, 3 km, the Eta model
used with NWP would go beyond its accuracy limit. The Eta model was replaced in the
US National Weather Service (NWS) operations by a non-hydrostatic mesoscale model
(NMM), which has a higher resolution and greater computational efficiency (Janjic 2003).
The coupling of the DREAM dust forecasting algorithm and the NMM meteorological
module (NMM-dust) forms a much higher resolution model, which enables an increased
spatial resolution to the postcode level, or about 3 km × 3 km. NMM-dust model can pro-
duce higher-resolution results and is executable in parallel mode on distributed systems.
Parallel processing is supported through the message passing interface (MPI) programming
model.

It would be ideal if the NMM-dust model could be run for a large forecasting domain
(i.e. the southwest of the continental United States, 37 × 20 degree in total). However,
the NMM-dust model itself and computing capacity cannot support such a large domain
size running at a 3 km resolution due to high computing and memory consumption (Yang
et al. 2011a). To support the runs, we should either (1) redesign the existing algorithms,
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codes, and data structures or (2) increase the speed of the CPU and network connection
(Yang et al. 2011a). Even though the model, after re-engineering the code, can support
such a large domain, the forecasting cannot successfully complete within reasonable time
for 1-day forecasting (Figure 1).

Therefore, it is not feasible to run the high-resolution NMM-dust model for the entire
southwest United States. Instead, the coarse-resolution Eta-8bin model could perform a
quick forecasting for a large domain, whereas the NMM-dust model could run at a higher
resolution for subdomains with potential dust storm events. Specifically, the adaptive
loosely coupled strategy would (1) first run the low-resolution model, Eta-8bin; (2) iden-
tify subdomains of high predicted dust concentrations by analysing the results of Eta-8bin
model; and (3) run the higher-resolution NMM-dust model for only those subdomains
with much smaller area in parallel by assimilating the output of the Eta-8bin model.
In this approach, high-resolution model results for specific subdomains of interest could
be obtained more rapidly than an execution of a high-resolution model over the entire
domain.

The Eta-8bin model output can be automatically taken by the NMM-dust models as an
input to reduce the communication time between the two different models. Modifications
to the Eta-8bin model pre- and post-processing components are required to enable this
model interoperability. Standard input and output file formats are implemented and uti-
lized for both the Eta-8bin and the NMM-dust models so that the outputs of one could
be used as the input for another. Specifically, we decided to use the Network Common
Data Form (NetCDF) as the file format for the outputs of both models, allowing standard
meteorological data processing tools to access and process these products. Both models,
after modification of pre- and post-processing components, are able to read NetCDF files
for model initialization. The use of a common, well-supported data format for both model
initialization and output significantly improves the communication and streamlines the pro-
cess of developing multi-model workflows. In this way, the output of one model can be used
to initialize another, either for a model run for a subsequent time-step, or for the execution
of a higher-resolution model for the same time period when the low-resolution model has
already been run.

3.2. Performance improvement through spatiotemporal patterns

3.2.1. Parallelization of NMM-dust model

Similar to other atmospheric model parallelization, an SPMD data decomposition approach
is used for parallelization by decomposing the domain into multiple subdomains and dis-
tributing the computing load of each subdomain onto one CPU core as a process. Figure 2
shows parallelizing a (4.5 × 7.1 degree) domain with spatial resolution 0.02083 degree
to 24 subdomains (4 × 6 decomposition) for one vertical layer. Based on the boundary
size and spatial resolution, the grid cells of one vertical layer would be 215 × 345. The
decomposition algorithm will try to make all subdomains the same dimension but the bor-
der subdomains on the last column and row will be allocated with the remaining grid
cells. Therefore, there would be generally 54 × 57 grid cells for each subdomain except
for subdomains on the border. The process processing the subdomains will need to com-
municate with their neighbouring processes for local computation and synchronization.
The process responsible for processing the internal subdomains, such as subdomain 5 in
blue, will require communication among four neighbour processes. The subdomains at
the edge of the domain, such as subdomain 4 in green, will exchange data among three
neighbours while the rest, such as subdomain 0 in red, will only require data exchange
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Subdomain 20 (54 × 57)

Subdomain 16 (54 × 57)

Subdomain 12 (54 × 57)

Subdomain 8 (54 × 57)

Subdomain 4 (54 × 57)

Subdomain 0 (54 × 58) Subdomain 1 (54 × 58)

Subdomain 5 (54 × 57)

Subdomain 9 (54 × 57)

Subdomain 13 (54 × 57)

Subdomain 17 (54 × 57)

Subdomain 21 (54 × 57) Subdomain 22 (54 × 57)

Subdomain 18 (54 × 57)

Subdomain 14 (54 × 57)

Subdomain 10 (54 × 57)

Subdomain 6 (54 × 57)

Subdomain 2 (54 × 58) Subdomain 3 (53 × 58)

Subdomain 7 (53 × 57)

Subdomain 11 (53 × 57)

Subdomain 15 (53 × 57)

Subdomain 19 (53 × 57)

Subdomain 23 (53 × 57)

Figure 2. Parallelizing a 4.56 × 7.12 degree domain to 24 subdomains (4 × 6) with 0.02083 degree
spatial resolution (about 3 km, 215 × 343 grid cells in total).

among two neighbours. During the computation, the intermediate data results of each
subdomain are produced in the local memory of a computing node. Other computing
nodes need to access the data through file transfer across the computer network. The
cost of data transfer due to communication among neighbour subdomains is a key effi-
ciency issue because it adds significant overhead (Baillie et al. 1997). Figure 3 and
Table 1 illustrate all the NMM-dust kernel subroutines in computing sequence for each
subdomain.

3.2.2. Computability strategies

The spatiotemporal principles enlighten the direction of improving HPC performance
(Yang et al. 2011a, 2011b) by (1) parallelizing the model and (2) selecting, arranging,
and scheduling the computing resources. In this article, more strategies are explored to
improve the performance of HPC by considering the spatiotemporal patterns of computing
resources.

3.2.2.1. Subdomain and computing node mapping. Different subdomain and computing
node mapping methods result in different communication overheads. Figures 4a and b
show two mapping methods for dispatching 12 subdomains to two computing nodes A

Figure 3. Computing subroutines and communication and synchronization for NMM-dust model
(the subroutines in grey require communication and synchronization).
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(a) Non-neighbour mapping (b) Neighbour mapping

Figure 4. Two mapping methods for dispatching 12 subdomains to two computing nodes A and B.

and B. Figure 4b requires only three grid cell communications over two different computing
nodes while Figure 4a requires nine adjacent boundaries to exchange data over two com-
puting nodes. Obviously, the method in Figure 4b can reduce the communication overhead
by making more communication occur within the same node rather than over computer
networks.

By default, the middleware Message Passing Interface Chameleon version 2
(MPICH2) will dispatch the subdomains to the computing nodes sequentially. For instance,
if we have two computing nodes and six subdomains, then the first, third, and fifth subdo-
mains will be dispatched to the first computing node and the second, fourth, and sixth
subdomains will be dispatched to the second computing node. Therefore, MPICH2 uses
the typical non-neighbour mapping method. In the subdomain and computing nodes exper-
iment, two computing nodes are utilized and half continuous subdomains are dispatched
on the first computing node and the rest are dispatched on the other computing node, in a
neighbour mapping fashion.

3.2.2.2. Storage. During the simulation, each process will produce the intermediate
results representing the subdomain for neighbouring subdomains to integrate after sim-
ulation. In the HPC architecture, each computing node is usually designed to access the
same remote data storage to execute tasks in parallel. A network file system (NFS) or other
methods are used to share the storage and to ensure the synchronization of data access.

However, the performance of the parallel system would be compromised if the network
connection and topology of the remote storage and computing nodes were not properly
configured (Huang and Yang 2010). In addition, different storage models could have dif-
ferent impacts on the performance for I/O and data-intensive applications. In this article,
we will test the impact of the most popular storage models, NFS and Parallel Virtual File
System version 2 (PVFS2; Latham et al. 2010) on the performance of dust storm forecast-
ing, compared with the local storage strategy, where each computing node has the same
copy of data on its local storage.

3.3. Experiment design

To enable the computability of dust storm forecasting (Koh et al. 2005) for higher resolu-
tions and larger geographic domain, we designed three sets of experiments to utilize and
understand various aspects of the computing strategies and spatiotemporal patterns of the
dust storm simulation: (1) Adaptive loosely coupled model is to test the efficiency of our
loosely coupled nesting strategy; (2) Subdomain and computing node mapping is used to
test the performance difference of different methods for dispatching subdomains to differ-
ent computing nodes; and (3) File system is to analyse the impact of different file systems
on performance.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 
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To investigate the performance improvement, we calculated the performance improve-
ment factor s:

s = �t

T
(1)

where �t is the decrease in the computing time of dust storm simulation and T is the
original computing time before parallel systems are optimized.

4. Experiments and result analyses

4.1. Experiment environment

Facility A includes 25 computing nodes and all nodes are connected through local area
networks (LANs of 1Gbps). Each node has 16GB memory and two quad-core proces-
sors (eight physical cores) with a clock frequency of 2.33 GHz, a peak performance of
7.6 Gflops/core, and a sustained performance of 1 Gflops/core.

4.2. Adaptive loosely coupled models

This experiment first executes a lower-resolution (22 km) Eta-dust for a large geographic
domain to identify areas of interests (AOIs) with high dust concentration. Spatiotemporal
correlation analysis is performed in near real-time fashion for 2-day, low-resolution results
of Eta-dust to identify AOI regions by utilizing the dust spatial distribution and evolution
patterns. High resolution but much smaller regions will be simulated by NMM-dust model
with 3 km as resolution in parallel. The dust event on 1 July 2007 was used to test the
feasibility of the adaptive loosely coupled nested dust storm framework. Figure 5 shows
the entire domain and 18 AOIs identified.

Figure 5. Low-resolution model domain and sub-domains (AOIs) identified for high-resolution
model execution.
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Figure 6. AOIs width and length distribution.

Figure 6 shows the AOI width and length distribution where most AOIs are within
2 × 2 degrees geographic coverage that can be well supported by higher-resolution NMM-
dust model. Figure 6 shows only 12 AOIs because some AOIs have similar domain size
and only one domain of each different size is illustrated. Figure 7 shows the execution
time required for different AOIs when HPC handles all AOIs in parallel. Therefore, it
is expected to finish the entire AOIs within 2.7 hours if all the AOIs are simulated by
the NMM-dust model in parallel. This does not satisfy the 2-hour constraint for 1-day
forecasting. Therefore, facility A should be optimized through better parallelization and
scheduling strategies to enable the forecasting within 2 hours.

4.3. Performance improvement

4.3.1. Subdomain and computing nodes mapping

Figure 8 shows the computing time for NMM-dust model using different process numbers
with neighbour mapping and non-neighbour mapping methods. The experiment results of
different mapping methods support that if we map the neighbouring subdomains to the
neighbouring processors of computing nodes, much higher performance can be obtained.
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Figure 7. NMM-dust model execution time for each AOI on facility A in parallel.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 



778 Q. Huang et al.

6

5

4

C
om

pu
tin

g 
tim

e 
(H

ou
rs

)

3

2

1

0
8 16 24 32 40 48 56 64 72 80 88 96

Performance improvement factor (s)

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t f

ac
to

r 
(s

) 
(%

)

Non-neighbor mapping

Process numbers

Neighbor mapping

104 112 120 128
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Figure 8. Neighbour mapping can improve the performance of NMM-dust storm modelling by a
factor of 20% than that of non-neighbour-mapping methods.

It is observed that around 20% performance improvement factor (s) could be achieved on
an average if we use the neighbour mapping method. Therefore, this result indicates that we
should dispatch neighbour subdomains to the same computing node as much as possible to
reduce the communication over computer networks.

4.3.2. File system model

During the simulation, each process will produce temporary files for its subdomains to
be integrated with that of other neighbouring subdomains/processes after simulation. The
experiment results (Figure 9) demonstrate that it is possible to get a similar performance
when using local storage to store the temporary files and then transfer results to the master
node after finishing the simulation and using NFS to share remote storage. When more pro-
cess numbers are used, the local storage strategy gets a little better performance. This result
indicates that the I/O performance is not the key bottleneck. However, PVFS2 would be
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Figure 9. Using different file systems to run the NMM-dust storm model for domains 2.3 ×
3.5 degree in the southwest United States with 3 km resolution, for 3-hour predictions. The
PVFS2 achieved a 20% performance improvement (s) than that of NFS.
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helpful to improve the performance by reducing the communication overhead. In addition,
PVFS would obtain better performance when using less than 32 processes.

4.4. Experimental result analysis and integration

4.4.1. Result analysis

The three sets of experiment results verified the feasibility of using loosely coupled nesting
models, and reveal spatiotemporal patterns and guidance for configuring and scheduling
the HPC facilities for better performance. Table 2 shows how to integrate the experiment
results into practical applications: (1) experiment 1 indicates that the spatiotemporal pat-
tern of a phenomenon can be utilized to enable the computability of simulating a large
geographic domain; (2) experiment 2 supports that if we map the neighbouring subdomains
to the neighbouring computing nodes, better performance can be obtained. The neighbour
subdomains assigned to the same machine would reduce the communication overhead by
making the communication occur at the same machine without going through the network;
and (3) experiment 3 suggests that a good file system model would greatly improve the
performance.

4.4.2. Integration

Finally, we integrated adaptive loosely coupled models to divide the large area into multiple
small subdomains by performing a fast, low-resolution model simulation, and then using
neighbour mapping and local storage strategies to improve the performance of the parallel
system for high-resolution model executions.

Figure 10 shows the improvements of computing time and performance for each AOI
execution on the 24 computing nodes for 48 process numbers before and after optimization
using the NMM-dust model. It is observed that the performance could be improved by
more than 36% in average for each AOI execution after using neighbour mapping and
local storage strategies. In addition, it indicates facility A can successfully complete the
forecasting within 1.8 hours. These results show that the approaches proposed in this article
address the computing demands of a large-area and high-resolution forecasting within the
time constraints.

5. Conclusion

This research reports strategies to enable the computability of dust storm forecasting. Two
dust-storm simulation models, Eta-8bin and NMM-dust, were used as examples to illus-
trate the adaptive loosely coupled strategy. The strategy divides the computation for a large
domain into multiple small subdomains that require much less computing. We presented
a solution based on the parallelization of the high-resolution model, NMM-dust, and a set
of strategies, including subdomain and computing nodes mapping and storage model that
can be used to better leverage HPC by considering the spatiotemporal patterns of com-
puting resources. Three sets of experiments are conducted to demonstrate the feasibility
of adaptive loosely coupled model executions and the improvements by using perfor-
mance optimization strategies. The integration results show that the approaches proposed
in this article can successfully perform high-resolution forecasting over a large geographic
domain within a reasonable time constraint.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 



780 Q. Huang et al.

Ta
bl

e
2.

E
xp

er
im

en
ta

lr
es

ul
ts

fo
r

be
tt

er
le

ve
ra

gi
ng

H
P

C
w

it
h

sp
at

io
te

m
po

ra
lp

at
te

rn
s.

E
xp

er
im

en
t

H
ow

to
le

ve
ra

ge
di

st
ri

bu
te

d
H

P
C

sy
st

em
s

R
ea

so
n

1.
L

oo
se

ly
co

up
le

d
ne

st
in

g
m

od
el

s
D

iv
id

e
an

d
ru

n
ho

ts
po

ts
ar

ea
,

w
hi

ch
is

id
en

ti
fi

ed
ba

se
d

on
th

e
sp

at
ia

lp
at

te
rn

an
d

te
m

po
ra

le
vo

lu
ti

on
of

du
st

st
or

m
in

pa
ra

ll
el

D
iv

id
in

g
a

la
rg

e
ge

og
ra

ph
ic

sc
op

e
in

to
m

ul
ti

pl
e

sm
al

lg
eo

gr
ap

hi
c

co
ve

ra
ge

ar
ea

s
ba

se
d

on
th

e
sp

at
io

te
m

po
ra

lp
at

te
rn

of
du

st
st

or
m

pr
od

uc
es

sm
al

la
re

as
w

ho
se

si
m

ul
at

io
n

ta
ke

s
m

uc
h

le
ss

ti
m

e
to

co
m

pl
et

e

2.
S

ub
do

m
ai

n
an

d
pr

oc
es

so
r

m
ap

pi
ng

D
is

pa
tc

hi
ng

su
bd

om
ai

ns
to

co
m

pu
ti

ng
re

so
ur

ce
s

ba
se

d
on

th
e

sp
at

ia
lr

el
at

io
ns

hi
ps

of
su

bd
om

ai
ns

as
w

el
la

s
co

m
pu

ti
ng

re
so

ur
ce

s

M
uc

h
hi

gh
er

pe
rf

or
m

an
ce

ca
n

be
ob

ta
in

ed
th

ro
ug

h
m

ap
pi

ng
th

e
ne

ig
hb

ou
r

su
bd

om
ai

ns
to

th
e

ne
ig

hb
ou

r
pr

oc
es

so
rs

3.
Fi

le
sy

st
em

m
od

el
D

at
a-

in
te

ns
iv

e
ap

pl
ic

at
io

ns
sh

ou
ld

us
e

op
ti

m
iz

ed
fi

le
sy

st
em

.

P
V

F
S

2
he

lp
s

in
re

du
ci

ng
th

e
I/

O
an

d
ne

tw
or

k
bo

tt
le

ne
ck

s

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 



International Journal of Geographical Information Science 781

3

2.5

2

1.5

C
om

pu
tin

g 
tim

es
 (

H
ou

rs
)

1

0.5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Performance improvement factor (s)

AOIs execution time before optimazationAOIs execution time after optimazation

AOIs (N)

0.0

5.0

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t f

ac
to

r 
(s

) 
(%

)

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Figure 10. After optimization, 18 subdomains run on facility A using NMM-dust model can be
completed within 2 hours.

The research results demonstrate a great potential to solve computing problems that
require conducting clustered high-resolution phenomena prediction for a large geographic
domain. More research and advancements in relevant fields would greatly enhance the
applicability of the methodologies introduced in the article in the next decade including
the following research aspects:

Cost model: The computing and communication time is based on many factors, such as
the amount of computing nodes, network bandwidth, CPU speed, memory, paral-
lelization degree, parallelization methods, mapping of the subdomain to computing
nodes, spatial domain and spatial resolution of the model, and the geospatial nature
of the scientific problem. The factors will determine the total computing time and
communication required for each computing subroutine. A cost model, consider-
ing all these factors, would be very helpful to design scheduling algorithms and
allocate suitable computing resources for similar forecasting problems.

Integration and validation: The validation of the adaptive loosely coupled nesting
models to perform real-time dust storm forecasting should be performed. The
integration of the performance improvement technologies and validation of model
results by comparing to real-time observations should be conducted.

Model combination: The success of the loosely coupled nested model depends on two
assumptions: (1) the coarse model can perform a quick and accurate forecasting
and the results are accurate enough to identify the high dust concentration areas
and (2) the finer model can perform a more accurate and detailed forecasting on
subdomains after ingesting the results of the coarse model. In this article, Eta-8bin
model is used as the coarse model and NMM-dust model is used as the finer model.
In the future, the two models will be put in operational environments.

Spatiotemporal computing: In practice, the simulation of dust storms is very dynamic
in spatiotemporal scales; therefore, it requires the dynamic allocation of comput-
ing resources. The spatiotemporal patterns are also of great importance to address
other aspects of geographic sciences, such as visualizing spatiotemporal inten-
sive datasets from simulation models. Therefore, conducting research using HPC
techniques in combination with 3D and 4D visualization techniques would help
understand the results of complex simulations to enable the modelling of com-
plex problems in a convenient fashion (Li et al. 2011). A middleware considering
these spatiotemporal patterns would optimize and enable the allocation and use of
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computing resources for geospatial applications effectively and efficiently (Huang
and Yang 2010). In the future, it would be necessary to develop a middleware that
can schedule the tasks in a way that improves the scalability and performance of
networked computing nodes by fully considering the spatiotemporal patterns. Such
an effort would also help to construct a better geospatial cyber infrastructure (Yang
et al. 2011a).

Spatial cloud computing (SCC): SCC is expected to be the next generation platform
to support geospatial science applications (Yang et al. 2011b). Adaptive loosely
coupled models require a large computing pool to run various AOIs identified by a
coarse model in parallel to achieve the best performance. In addition, real-time dust
storm simulation is a big data application with computing and concurrent access
spikes when a dust storm approaches. Different amounts of computing resources
are required at different times to run low- or high-resolution models for a large geo-
graphic region. This causes computing spike requirements that can be best handled
by elastic and on demand SCC.

Acknowledgements
This work was supported by NSF (IIP-1160979 and CNS-1117300), NASA (NNX12AF89G), and
the Microsoft Research’s Earth, Energy, and Environment Program.

References
Anthes, R., 1983. Regional models of the atmosphere in middle latitudes. Monthly Weather Review,

111, 1306–1335.
Armstrong, M.P., Cowles, M., and Wang, S., 2005. Using a computational grid for geographic

information analysis. Professional Geographer, 57 (3), 365–375.
Baer, F. and Zhang, B., 1998. Optimizing computations in weather and climate prediction models.

Meteorology and Atmospheric Physics, 67 (1–4), 153–168.
Baillie, C.F., MacDonald, A.E., and Sun, S., 1995. QNH: a portable, massively parallel multi-scale

meteorological model. In: Proceedings of the fourth international conference on the applications
of high performance computers in engineering, 19–21 June, Milan, Italy.

Baillie, C., Michalakes, J., and Skilin, R., 1997. Regional weather modeling on parallel computers.
Parallel Computing, 23 (14), 2135–2142.

Baklanov, A., Rasmussen, A., Fay, B., Berge, E., and Finardi, S., 2002. Potential and shortcomings
of numerical weather prediction models in providing meteorological data for urban air pollution
forecasting. Water, Air, & Soil Pollution: Focus, 2 (5–6), 43–60.

Borthwick, A., Marchant, R., and Copeland, G., 2000. Adaptive hierarchical grid model of water-
borne pollutant dispersion. Advances in Water Resources, 23 (8), 849–865.

Calstroka, J. and Watson, P., 2010. Automatic software deployment in the Azure cloud, distributed
applications and interoperable systems. In: Eliassen, F. and Kapitza, R., Eds. Proceedings of 10th
IFIP WG 6.1 International Conference, DAIS 2010, Amsterdam, Netherlands, June 7–9, 2010.
Lecture Notes in Computer Science: New York; 155–168.

Constantinescu, M., Sandu, A., and Carmichael, G.R., 2008. Modeling atmospheric chemistry and
transport with dynamic adaptive resolution. Computational Geosciences, 12 (2), 133–151.

Cotton, W.R., et al., 2003. RAMS 2001: current status and future directions. Meteorology and
Atmospheric Physics, 82 (1–4), 5–29.

Davis, C., et al., 1999. Development and application of an operational, relocatable, meso-
gammascale weather analysis and forecasting system. Tellus, 51A, 710–727.

Drake, J. and Foster, I., 1995. Introduction to the special issue on parallel computing in climate and
weather modeling. Parallel Computing, 21 (10), 1539–1544.

Dulac, F., Moulin, C, and Lambert, CE., 1996. Quantitative remote sensing of African dust transport
to the Mediterranean. In: S. Guerzoni, R. Chester, eds. The impact of desert dust across the
Mediterranean. Berlin: Springer Verlag, 25–49.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 



International Journal of Geographical Information Science 783

Fennessy, M.J., Shukla, J., 2000. Seasonal prediction over north America with a regional model
nested in a global model. J. Climate, 13, 2605–2627.

Giorgi, F., Mearns, L.O., Shields, C., and McDaniel, L., 1996. Regional nested model simulations of
present day and 2 × CO2 climate over the central plains of the U.S. Climatic Change, 40 (3–4),
457–493.

Gong, S.L., et al., 2003. Characterization of soil dust aerosol in China and its transport and dis-
tribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical
Research, 108 (D9), 4262. doi:10.1029/2002JD002633.

Goudie, A.S. and Middleton, N.J., 1992. The changing frequency of dust storms through time. Earth
and Environmental Science, 20 (3), 197–225.

Han, Z., et al., 2004. Model study on particle size segregation and deposition during
Asian dust events in March 2002. Journal of Geophysical Research, 109, D19205.
doi:10.1029/2004JD004920.

Hart, G., et al., 1998. Multi-scale atmospheric dispersion modeling by use of adaptive gridding
techniques. Environmental Monitoring and Assessment, 52 (1–2), 225–238.

Henderson, T., et al., 1994. Parallelizing the Eta weather forecast model: initial results. In:
Proceedings of High Performance Computing ‘94. Society for Computer Simulation, La Joya,
CA, 10–14 April, 76–81.

Huang, Q., 2011. Utilizing Model interoperability and spatial cloud computing to support dust storm
forecasting. Thesis (PhD), George Mason University, Fairfax, VA, USA.

Huang, Q. and Yang, C., 2010. Optimizing grid computing configuration and scheduling for
geospatial analysis–An example with interpolating DEM. Computers and Geosciences, 37 (2),
165–176.

Janjic, Z.I., 2003. A nonhydrostatic model based on a new approach. Meteorology and Atmospheric
Physics, 82, 271–285.

Jasper, K., Gurtz, J., Lang, H., 2002. Advanced flood forecasting in Alpine watersheds by cou-
pling meteorological observations and forecasts with a distributed hydrological model. Journal
of Hydrology, 267 (1–2), 40–52.

Jin, H., et al., 2003. Automatic multilevel parallelization using OpenMP. Scientific Programming,
11 (2), 177–190.

Koh, M., Peng, L., and See, S., 2005. Integration of parallel MM5 with distributed resource man-
ager and performance evaluation. In: Proceedings of the eighth international conference on
high-performance computing in Asia-Pacific Region (HPCASIA’05). 30 November–3 December,
Beijing, China. Washington, DC: IEEE Computer Society, 289–298.

Kuligowski, R.J., and Barros, A.P., 1999. High-resolution short-term quantitative precipitation fore-
casting in mountainous regions using a nested model. J. Geophys. Res., 104 (D24):31, 553–31,
564, doi:10.1029/1999JD900938.

Latham, R., et al., 2010. A next-generation parallel file system for Linux cluster. LinuxWorld
Magazine, 2 (1), 54–57.

Li, J., et al., 2011. Visualizing dynamic geosciences phenomena using an octree-based view-
dependent LOD strategy within virtual globes. Computers and Geosciences, 37 (9), 1295–1302.

McGregor, J.L., 1997. Regional climate modelling. Meteorol. Atmos. Phys, 63, 105–117.
Michalakes, J., Dudhia, J., Gill, D., Klemp, J., and Skamarock, W., 1998. Design of a next-generation

regional weather research and forecast model. In: W. Zwieflhofer, N. Kreitz, eds. Towards
Teracomputing, World Scientific: River Edge, New Jersey, 117–124.

Nanjundiah, R.S., 1998. Strategies for parallel implementation of a global spectral atmospheric gen-
eral circulation model. In: High Performance Computing, 1998. HIPC ‘98. 5th International
Conference, 17–20 December, Chennai, India. Washington, DC: IEEE Computer Society,
452–458.

Neilson, R.P., Pitelka, L.F., Solomon, A.M., Nathan, R., Midgley, G.F., Fragoso, J.M.V., Lischke, H.,
and Thompson, K., 2005. Forecasting regional to global plant migration in response to climate
change. American Institute of Biological Sciences. 55 (9), 749–759.

Nickling, W.G. and Gillies, J.A., 1993. Dust emission and transport in Mali, West Africa.
Sedimentology, 40 (5), 859–868.

Nickovic, S., et al., 1997. Aerosol production/transport/deposition processes in the Eta model: desert
dust cycle simulations. In: G. Kallos, V. Kotroni, and K. Lagouvardos, eds. Proceedings of the
Symposium on Regional Weather Prediction on Parallel Computer Environments, University of
Athens, Greece, 109–122.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 



784 Q. Huang et al.

Nickovic, S., et al., 2001. A model for prediction of desert dust cycle in the atmosphere: quantify-
ing the radiative impacts of mineral dust (DUST). Journal of geophysical research, 106 (D16),
18113–18129.

Pleim, J.E., Chang, J.S., and Zhang, K., 1991. A nested grid mesoscale atmospheric chemistry model.
J. Geophys. Res., 96 (D2), 3065–3084.

Purohit, S., et al., 1999. Development of parallel climate/forecast models on 100 GFlops PARAM
computing systems. In: Proceedings of the eight ECMWF workshop on the use of parallel
processors in meteorology, 16–20 November, Reading, UK. Reading: World Scientific.

Ramón, D.E., Laprise, R., and Denis, B., 2002. Forecasting skill limits of nested, limited-area models:
A perfect-model approach. Mon. Wea. Rev., 130, 2006–2023.

Rodriguez, B., Hart, L., and Henderson, T., 1995. Comparing scalable programming techniques for
weather prediction. In: Proceedings of the conference on Programming Models for Massively
Parallel Computers (PMMP ‘95) 9–12 October, Berlin, Germany. Washington, DC: IEEE
Computer Society, 111–120.

Rodriguez, B., Hart, L., and Henderson, T., 1996. Parallelizing operational weather forecast models
for portable and fast execution. Journal of Parallel and Distributed Computing, 37 (2), 159–170.

Sela, J.G., 1980. Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108,
1279–1292.

Shao, Y. and Dong, C.H., 2006. A review on East Asian dust storm climate, modeling and monitoring.
Global and Planetary Change, 52 (1–4), 1–22.

Shao, Y., et al., 2007. Numerical simulation of the October 2002 dust event in Australia. Journal of
Geophysical Research, 112, D08207. doi:10.1029/2006JD007767.

Sokolik, I.N. and Toon, O.B., 1996. Direct radiative forcing by anthropogenic airborne mineral
aerosols. Nature, 381, 681–683.

Sterling, T., et al., 1995. Communication overhead for space science applications on the Beowulf
parallel workstation. In: Fourth IEEE international symposium on high performance distributed
computing (HPDC-4 ‘95), 2–4 August 1995, Pentagon City, VA. Washington, DC: IEEE
Computer Society, 23.

Westphal, D.L., Toon, O.B., and Carlson, T.N., 1988. A case study of mobilization and transport of
Saharan dust. Journal of the Atmospheric Sciences, 45 (15), 2145–2175.

Wolters, L., Cats, G., and Gustafsson, N., 1995. Data-parallel numerical weather forecasting.
Scientific Programming, 4 (3), 141–153.

Xie, J., et al., 2010. High performance computing for the simulation of dust storms. Computers,
Environment, and Urban Systems, 34 (4), 278–290.

Xue, M., et al., 2003. The Advanced Regional Prediction System (ARPS), storm-scale numeri-
cal weather prediction and data assimilation. Meteorology and Atmospheric Physics, 82 (1–4),
139–170.

Yang, C., et al., 2008. Distributed geospatial information processing: sharing Earth science informa-
tion to support Digital Earth. International Journal of Digital Earth, 1 (3), 259–278.

Yang, C., et al., 2011a. Using spatial principles to optimize distributed computing for enabling the
physical science discoveries. Proceeding of National Academy of Sciences of USA, 108 (14),
5498–5503.

Yang, C., et al., 2011b. Spatial Cloud Computing: how could geospatial sciences use and help to
shape cloud computing. International Journal on Digital Earth, 4 (4), 305–329.

D
ow

nl
oa

de
d 

by
 [

17
3.

53
.7

6.
26

] 
at

 1
9:

32
 0

9 
A

ug
us

t 2
01

3 




