
Learning from data streams via online transduction

Shen-Shyang Ho and Harry Wechsler

Department of Computer Science
George Mason University

4400 University Drive
MSN 4A5

Fairfax, VA 22030

E-mail:{sho,wechsler }@cs.gmu.edu

Abstract

A practical issue in the existing transduction methods is
expensive and inefficient computation compared to induc-
tion methods. This has hindered the use of transduction
methods in temporal and real-time data mining.

In this paper, we introduce a fast incremental transduc-
tive confidence machine (TCM) based on adiabatic incre-
mental support vector machine (SVM) such that critical in-
formation from current transduction trial is stored for later
use. The algorithm is empirically shown to be computation-
ally efficient and its performance is consistent with standard
TCM implementation.

Besides being a classifier, TCM provides additional use-
ful statistical information about the data that it processed.
These information can be useful for temporal and real-time
data mining. We demonstrate the feasibility and usefulness
of using such statistical information for stream-based active
learning.

1. Introduction

A simple interpretation of transduction is that the un-
known values at some points of interest are estimateddi-
rectly from the training data [16]. This is different from
induction when a general rule is inferred from the training
data and predictions are based on this general rule. The
practical distinction between transduction and induction is
whether we extract and store the general rule or not [19].
Current transduction methods are computationally expen-
sive such that any improvement in performance (compared
to induction, if any) cannot justify this expensive compu-
tation. Hence, transduction methods are seldom (or never)
been taken seriously as viable (temporal or real-time) data

mining techniques.
One such transduction method, called transductive con-

fidence machine (TCM), proposed by Gammerman and his
colleagues [2] [3], predicts the classification of an object to-
gether with a measure of confidence using algorithmic ran-
domness theory in an offline setting. Their first proposed al-
gorithm is based on support vector machines (SVM). TCM
(independent of the base classifier) is later proven to be
well-calibrated (in the sense that in the long run, the number
of wrong predictions is bounded) by Vovk [18] in an online
setting, i.e., examples are presented to a learner one by one,
with i.i.d. assumption.

Transduction in general, and TCM in particular, are com-
putationally expensive and are only practical for small data
sets. To improve the computational speed, Saunders et. al.
[14] used a hashing function to split the training set into
smaller subsets, of roughly equal size, which are used to
construct a number of support vector machines in the TCM
implementation. This solution, however, assumes the avail-
ability of all the training examples, which is not feasible
in an on-line setting. A modification of TCM, called induc-
tive confidence machine (ICM) [10], is also proposed which
sacrifices some prediction accuracy for efficiency.

In this paper, we introduce a fast incremental TCM
which integrates incremental SVM byadiabatic increment,
i.e., preserving the Karush-Kuhn-Tucker conditions on all
previously seen training examples [1], into TCM. This im-
plementation, without splitting up the current training set
into subsets and without sacrificing prediction accuracy, im-
proves the computational efficiency of TCM significantly.

Besides being a classifier, TCM provides additional use-
ful statistical information about the data that it processed.
We show the feasibility and usefulness of using such statis-
tical information for stream-based active learning.

In Section 2, we review some fundamental concepts in

1

algorithmic randomness and p-value for understanding of
TCM. Section 3 describes the on-line (randomized) TCM
and the idea of region predictor. In Section 4, we review
different implementation strategies for incremental support
vector machine and in Section 5, we briefly review the adia-
batic increment for incremental SVM. In Section 6, we dis-
cuss the difference between online and incremental learn-
ing. In Section 7, we discuss online transduction and the
use of incremental classifier to improve its computational
efficiency. In Section 8, we introduce our implementation
of the online incremental TCM. In Section 9, we perform
experiments to compare the computational efficiency and
performance of our algorithm with the standard TCM im-
plementation and an implementation of TCM using a dif-
ferent incremental strategy. We also demonstrate its appli-
cation on stream-based active learning. Throughout the rest
of the paper, we assume basic familiarity of SVMs [16].

2. Randomness, p-value and Transductive
Confidence Machine (TCM)

Vovk and et. al. [17] first proposed the application of (al-
gorithmic) randomness on machine learning problems. The
confidence measure used in TCM is based upon universal
tests for randomness, or their approximation. A Martin-Löf
randomness deficiency [8] based on such tests is a universal
version of the standard statistical notion of p-values.

By reformulating the Martin-L̈of randomness test, we
have a functiont : Z∗ → [0, 1] called ap-value function
if

1. Let Pn be a set of probability distribution inZn. For
all n ∈ N andr ∈ [0, 1] and allP ∈ Pn,

P{z ∈ Zn : t(z) ≤ r} ≤ r (1)

2. t is semi-computable from above, i.e. there exists
a computable sequence of computable functionsti :
Z∗ → [0, 1],i = 1, 2, · · · such thatt(z) = infi ti(z)
for all z ∈ Z∗.

whereZ is the set of all possible labeled examples,Zn is
the set of all sequences ofn labeled examples of the form

{z1, z2, · · · , zn} = {(x1, y1), (x2, y2), · · · , (xn, yn)}

wherexi is an object andyi is its label fori = 1, 2, · · · , n
andZ∗ is the set of all finite sequences of labeled exam-
ples [11]. This p-value function is practically equivalent to
the standard statistical notion of p-values. A particular p-
value for a sequence of labeled examples is also called the
randomness levelof that sequence [3].

In the literature on significance testing, the p-value is of-
ten defined as the probability of observing a point in the

sample space which can be considered as extreme as, or
more extreme than, the observed sample [20]. This cal-
culation requires a well defined stochastic ordering of the
sample space which can be provided by a test statistic. The
p-value serves as a measure of how well the data support
or discredit a null hypothesis: the smaller the p-value, the
greater the evidence against the null hypothesis. In other
words, smaller p-values of the observed level of significance
favor the alternative hypothesis and larger values favor the
null hypothesis.

In order to construct a valid p-value function (the
main component in a TCM), an ordering function called
strangeness measure[3] (or nonconformity score [19]) is
required. The strangeness,αi, of a particular labeled ex-
ample,zi, corresponds to the uncertainty of that example
with respect to all other labeled examples: the higher the
measure, the higher the uncertainty. The strangeness mea-
sure used depends on the type of base classifier used to con-
struct a TCM. To use support vector machine (SVM) as the
base classifier to construct a TCM, the solution, a set of
Lagrange multipliers, of the dual problem of the SVM opti-
mization problem is used as the strangeness measure [2]. A
strangeness measure for k-nearest neighbor is given in [11].

Consider a sequence of labeled examples,
{z1, z2, · · · , zn−1} with their corresponding strangeness
values,α1, α2, · · · , αn−1 and an unlabeled example,zn,
assigned a particular label and its strangeness value,αn,
we define a p-value functiont : Zn → [0, 1] which returns
a p-value ofzn (assigned the particular label) by

t(z1, z2, · · · , zn) =
#{i = 1, · · · , n : αi ≥ αn}

n
(2)

which satisfies

P{(z1, z2, · · · , zn) : t(z1, z2, · · · , zn) ≤ r} ≤ r

for anyr ∈ [0, 1] and for any probability distributionP in
Zn, provided that the strangeness value of an example in
the sequence is independent of its position in the sequence.
This p-value computation is a simple approximation of the
randomness level of the Martin-Löf’s randomness test.

Below is the algorithm for the approximation of all p-
values for all possible labels that an unlabeled example can
be assigned. This algorithm is the essential procedure of a
TCM:

Algorithm:

Input: training setT = {z1, z2, · · · , zn−1} and an un-
labeled examplezn = (xn, ?):

1. FORy = 1 to c (number of possible classes)

(a) Labelzn as classy

(b) Construct a classifier (e.g.SV M) using T
and(xn, y)

2

(c) UseSV M to compute strangeness,
α = {α1, α2, · · · , αn } for T and(xn, y)

(d) Use strangeness,α to compute p-value for
(xn, y) (Equation (2))

ENDFOR

2. Assign the label with the largest p-value tozn =
(xn, ?)

3. Confidence = 1 - second highest p-value

4. Credibility = highest p-value

3. Online transductive confidence machine

The basic idea of online TCM is similar to the above
procedure. A randomized version of TCM introduced by
Vovk [18] is used here so that a prediction error bound for
online TCM can be achieved. The computation of p-value
for TCM and its randomized version is identical.

TCM is a way to define aregion predictor[18] (or con-
formal predictor [19]) from a learning algorithm that can
only return a prediction for each unlabeled test input. A
region predictor is a function when given an unlabeled test
input and a confidence level returns a set of possible predic-
tions with a degree of confidence.

For a particular unlabeled examplezn = (xn, ?), a train-
ing setT , a set of all possible labelsY andδ ∈ (0, 1), we
can obtain a region predictor:

Γ1−δ(T, zn)

which containsy ∈ Y that satisfy

#{i = 1, · · · , n : αi ≥ αy
n}

n
> δ (3)

where α1, · · · , αn−1 are the strangeness measure of the
training examples andαy

n is the strangeness measure ofzn

labeledy. Intuitively, we can say thatzn can take any of the
labels inΓ at1− δ confidence level.

“Uncertain” region predictor are region predictor that
has more than one label. The region predictor can also be
an empty set.

A modification of TCM calledrandomized Transductive
Confidence Machine (rTCM)defines a randomized region
predictorΓ such that for any labely ∈ Y ,

1. Include labely in Γ when

#{i = 1, · · · , n : αi > αy
n}

n
> δ

2. Do not includey in Γ when

#{i = 1, · · · , n : αi ≥ αy
n}

n
≤ δ

3. Otherwise, includey in Γ with probability

#{i = 1, · · · , n : αi ≥ αy
n} − nδ

#{i = 1, · · · , n : αi = αy
n}

y is included when the above expression is greater than
a random number drawn from a uniform distribution
on [0, 1].

A rTCM is proven to have an error probabilityδ at trial
n = 1, 2, · · · , and this error probability at each trial is inde-
pendent of other trials [18].

A TCM predicts the label of an example as the one with
the largest p-value with a confidence measure equals to one
minus the second largest p-value and credibility equals to
the largest p-value [3]. If the region predictor is of size
larger than one, we know that the prediction has low confi-
dence.

We will show the usefulness of these additional informa-
tion about each example for stream-based active learning in
Section 9. More details and properties of region predictor
and [randomized] TCM can be found in [18].

4. Incremental support vector machine

Earlier implementations of incremental SVM make use
of the properties of the support vectors and the distribution
knowledge of the sample space [21] to reduce the size of
the training set as more examples are added. In some cases,
only the historical support vectors and the new examples are
kept for training the classifier [15]. These methods require
re-training the classifier using this new training data-set.

Recently, implementations of incremental SVM that
avoid retraining all the training examples have been sug-
gested [4] [7] [1].

Fung and Mangasarian [4] proposed a fast and simple in-
cremental support vector machine that modifies the current
linear classifier by “both retiring old data and adding new
data”. Their method uses a non-standard SVM formulation
that classifies points by assigning them to the closest of two
parallel hyper-planes that are pushed apart as far as possi-
ble. However, their non-standard SVM does not provide
the strangeness measure (Lagrange multiplier for each ex-
amples) required by TCM using SVM as the base classifier.

Kivinen et. al. [7] considered online learning in a Re-
producing Kernel Hilbert Space using classical stochastic
gradient descent within a feature space and derive a rate of
convergence and error bound. However, the error bound
does not corroborated well with their experiments [7].

We use the incremental SVM implementation by adia-
batic increment [1] since

1. it can be easily integrated into TCM.

3

2. it constructs the exact solution recursively as a new ex-
ample is added.

We review the main idea of adiabatic increment in the next
section.

5. Incremental SVM by adiabatic increments

Given a set of labeled examples

{z1, · · · , zn} = {(x1, y1), · · · , (xn, yn)}

whereyi ∈ {−1, 1} for i = 1, 2, · · · , n such that the two
classes of examples are not linearly separable, an optimal
hyperplane is constructed by minimizing the functional

W (ξ) =
1
2
||w||2 + C

n∑
i=1

ξi (4)

wherew is the hyperplane normal vector, the constantC >
0 andW (ξ) subjects to the constraints

yi(w · Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n
(5)

whereΦ(xi) mapsxi into the feature space andb is an off-
set. Introducing Lagrange multipliers,αi ≥ 0, i = 1, · · ·n,
for each of the constraints above, the dual form of the above
optimization problem is expressed as

1
2

n∑
i=1

n∑
j=1

yiyjαiαjΦ(xi) · Φ(xj)−
n∑

i=1

αi → min
αi

(6)

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, · · · , n (7)

Apply the Lagrange method again on the dual problem, we
get

W (α, b) =
1
2

n∑
i=1

n∑
j=1

yiyjαiαjΦ(xi) · Φ(xj)

−
n∑

i=1

αi + b
n∑

i=1

yiαi (8)

ReplacingyiyjΦ(xi) ·Φ(xj) with Qij (each element of the
kernel matrix,Q),

W (α, b) =
1
2

n∑
i=1

n∑
j=1

αiQijαj −
n∑

i=1

αi + b
n∑

i=1

yiαi (9)

From the slack-variables,ξi, we get the constraintsαi ≤
C, i = 1, · · · , n.

W (α, b) is minimized given the Karush-Kuhn-Tucker
(KKT) conditions

gi =
∂W

∂αi
=

n∑
j=1

Qijαj + yib− 1 > 0 αi = 0
= 0 0 ≤ αi ≤ C
< 0 αi = C

(10)

∂W

∂b
=

n∑
j=1

yjαj ≡ 0 (11)

The first KKT condition partitions the training data into
three sets:

1. the set of support vectors that lies on the margin,S,
when0 < αi < C.

2. the set of support vectors that lies in the margin,E,
whenαi = C.

3. the remaining set,R, whenαi = 0.

The main idea of adiabatic increment is that all the ex-
amples in the training set do not violate the KKT conditions
when a new examplezn+1 is added to this training set when
its αn+1, initially set to zero, is incremented. In order to do
so, some “bookkeeping” [1] procedure is necessary.

When αn+1, of the new example, is incremented, the
“bookkeeping” procedure will update the values ofgi

(Equation (10)) andαi for i = 1, 2, · · · , n, n + 1. In do-
ing so, an example may be transferred from one set to one
of the other two sets accordingly.

More derivation details and implementation issues such
as the computation of the Jacobian inverse,J , by recursion,
and maintaining of a smaller remaining set,R, to improve
computational efficiency, are found in [1].

6. Online vs incremental learning

Before we introduce our TCM implementation in sec-
tion 8, we will like to point out some distinctions between
online and incremental learning. They should not be used
interchangeably.

We need to distinguish between the learningsettingand
learningalgorithm. Two questions can be asked:

1. Is the learningsetting(i) online or (ii) offline ?

2. Is the learningalgorithm(i) incremental or (ii) batch ?

In an online setting, data enter the learner sequentially, as
packets of data or individual datum. This is different from
the offline setting when the whole training set is assumed to
be available to the learner.

4

For both the online and offline settings, the learning algo-
rithm can be incremental. As the data are iteratively added
to the training set to learn a general rule, the rule to be learnt
during the current trial is built from some compact informa-
tion of the previously learnt rule and the new data. This type
of learning isalgorithmically incremental.

Earlier methods [21] [15] on incremental SVM are not
algorithmically incremental. They require the re-training
of the classifier using all the available training examples at
each trial. These are actuallybatch algorithms used in an
online setting.

Later methods such as incremental proximal support
vector classifier [4], Kivenen and et. al.’s online learning [7]
and the incremental SVM by adiabatic increments [1] are all
algorithmically incremental. We note that since SVM is a
convex optimization problem, a correctly formulated incre-
mental algorithm should always achieve the optimal solu-
tion.

7. Online transduction and incremental classi-
fier

In an online setting, the general rule (induced from
the current training set) may be modified whenever a new
packet of data or an individual datum becomes available.
It becomes awkward to talk about the prediction accuracy
of a particular rule. Vovk and et. al. [19] point out that
“it makes more sense to emphasize the overall frequency of
accurate prediction” during the online process. Under this
assumption, the error bound of (online randomized) TCM is
shown [18] to be independent of other (previous or future)
trial(s). In other words, the error bound for the complete on-
line transduction process is not affected by any rule infered
(if any) at any particular point of time.

As we pointed out in Section 1 (Introduction) that the
practical distinction between transduction and induction is
whether we extract and store the general rule or not. More
specifically, there are some critical information required by
the transduction methods that is also computed in the induc-
tion methods.

Recent developments in incremental (inductive) classi-
fier, such as the adiabatic incremental SVM, has given us
some hints on how to go about improving the computational
efficiency of transduction.

We conjecture that any algorithmically incremental clas-
sifier (e.g. [4] [7]) can either be modified to become viable
transduction methods or integrated into existing transduc-
tion methods (e.g. TCM) to speed up the transduction pro-
cess in an on-line setting and still maintain its performance.

So, instead of extracting and storing the general rule
from the training set and repeating this process in the on-
line setting, we could compute and store critical informa-
tion efficiently from the current training set to be used for

any transduction process later.

8. Incremental Online Transductive Confi-
dence Machine

Let T be the current training set withn − 1 labeled ex-
amples,{α, b} be the current solution whereα is the set of
Lagrange multipliers andb is the offset,J be the current Ja-
cobian inverse,Q be the kernel matrix,S, E be the current
two support vector sets (on and within margin, respectively)
andR be the current remaining vector set.

By integrating the procedure of the adiabatic incremental
learning into the algorithm for TCM (Section 2), we get:

Algorithm (One transduction process for a new un-
labeled example):
Input: zn = (xn, ?), T , {α, b}, J , Q, S, E, R.

1. Keep a copy of{α, b}, J , Q, S, E, R for re-
initialization at the end of each FOR loop

2. FOR y = 1 to c (number of possible classes)

(a) Labelzn asy (i.e. zn = (xn, y))

(b) Initializeαy
zn

to zero.

(c) ComputeQznj for all j ∈ S (the set of sup-
port vectors) and include it intoQ.

(d) Computegzn using Equation (10).

(e) If gzn > 0,

i. αy
zn

= 0, and goto (g)

(f) Elseif gzn ≤ 0, apply the largest possible
increment∆αy

zn
so that (the first) one of

the following conditions occurs:

i. gzn = 0: Add zn to S, updateR ac-
cordingly, goto (g).

ii. αy
zn

= C: Add zn to E and goto (g).

iii. Do “bookkeeping” amongS, E andR.
UpdateJ if S changes

iv. Repeat (f) until no more changes to
S, E andR.

(g) Compute p-values forzn = (xn, ?) labeled
y usingα = {α1, α2, · · · , αn−1, α

y
zn
}.

(h) Test whethery is in the region predictor of
zn = (xn, ?) with confidence level1 − δ
usingrTCM .

(i) Re-initialize{α, b}, J , Q, S, E, R to their
respective input values.

ENDFOR

3. Assign the label with the largest p-value to ex-
amplezn.

4. Calculate the confidence as1− second largest p-
value.

In the next section, we use the acronym “TCM” to mean
theonline (randomized) TCM using SVM as the base clas-
sifier.

5

9. Experiments

This section describes experimental data concerning the
comparative efficiency for our novel adiabatic incremental
TCM method using SVM, and its utility for stream-based
active learning.

9.1. Comparison of computational cost and classi-
fication performance of three different TCM
implementations

We generated a binary data-set using Musicant’s NDC
(normally distributed clustered) data-set generator [9]. The
data is generated as clusters of normally distributed points
in Rn with an adjustable linear separability. The values of
each dimension are scaled to range in[−1, 1]. The data-set
consists of 3000 points in a 32 dimensional input space and
the experiments are performed in MATLAB 6.5.

We compare the computational cost and performance of
(A) the original TCM, (B) the incremental TCM by keeping
the historical support vectors, and (C) the incremental TCM
by adiabatic increment that is described in Section 8. As we
mentioned in Section 6, incremental SVM can be used in an
offline setting. We use the adiabatic incremental SVM (that
has comparable computational cost as other QP implemen-
tations of SVM in an offline setting) as the base classifier
in (A) and (B). For all experiments,δ is set to0.1 i.e. 90%
confidence level. For SVM, we use a Gaussian kernel and
C is set to10.

The computational cost is based on the number of itera-
tions of step 1(f), the adiabatic step, which is the most ex-
pensive step in the three implementations. The upper graph
in Figure (1) shows the total computational cost of the three
implementations at each instance when a new example is
included into the training set of the learner. We see that our
implementation (C) requires much less number of total it-
erations and the rate of increment has a much gentler slope
than implementation B while the the total iterations of orig-
inal TCM increases exponentially. From the lower graph
in Figure (1), we see that at each streaming data instance,
the number of iterations remains small and stable for imple-
mentation (C).

We note here that each iteration does not corresponds to
a fix time unit since at each iteration some matrix compu-
tations are required such that the computation cost depends
mainly on the size of the inverse Jacobian,J (i.e. the num-
ber of support vectors) and the number of training exam-
ples. Maintaining a smaller setR and assuming a “concept
drift” setting (that is likely to occur in real world problems)
are some ways to provide an upper bound for the computa-
tional cost at each iteration.

We observe from Figure (2) that using adiabatic incre-
ment for TCM and original TCM have very similar learning

Figure 1. Comparison of the (upper graph) to-
tal number of updating iterations and (lower
graph) number of updating iterations at each
data stream instance required for (A) original
TCM, (B) incremental TCM by keeping histor-
ical support vectors and (C) incremental TCM
by adiabatic increment. (Results for (A) only
shown for 1000 instances in the upper graph
and 100 instances in the lower graph as the
rate of increment is so high that the visualiza-
tion of the others curves is affected if results
for all instances are shown.)

curves for accuracy, error and uncertainty predictions. The
slight differences are due to the randomized nature of our
TCM implementation.

We also note from Figure (2) that the number of uncer-
tain predictions are much higher than the accurate predic-
tions for implementation (B) while its error predictions are
higher than the other two implementations. This is the result
of information lost when data instances that are not support
vectors previously are discarded, which may become useful
later.

Theoretically, the data samples are no longer i.i.d. and
the error bound for TCM is no longer valid. Empirically,
we observed that despite the fact that the training examples
used at each trial are smaller than the other two implemen-
tations in a long data stream (i.e. the total computational
cost will be lower in a long data stream), its classification
performance is dubious.

6

Figure 2. Comparison of the training perfor-
mance of (A) original TCM, (B) incremental
TCM by keeping the historical support vec-
tors and (C) incremental TCM using adiabatic
increment. (A) and (C) has very similar learn-
ing curves. Slight difference is due to the
randomized nature of the algorithm.

9.2. Application of TCM: Stream-based active
learning

TCM has been used to perform active learning [5] (in
a data stream [6]). For stream-based active learning, unla-
beled examples are provided to the learner one by one, and
the learner must decide whether or not to request its label
and add it to the training set.

The goals for active learning are two fold : (i) less com-
putation (due to smaller training sets) without penalizing
the performance of the classifier, and (ii) reducing the hu-
man labeling efforts and cost.

We recall that in Section 3, we describe a region pre-
dictor as a function, when given an unlabeled test input

and a confidence level, returns a set of possible predictions
with a degree of confidence and uncertain region predic-
tor are region predictor that has more than one label. Our
stream-based active learning method takes into account the
deviation from uncertain region predictorof each unlabeled
example provided to the learner. This deviation measure
makes use of the p-values computed for all possible labels
for an unlabeled example by TCM.

Given a binary classification problem,U(e) = |pi − pj |,
wherepi is the p-value for an unlabeled examplee labeled
asi andpj is the p-value for the example labeled asj, is a
measure of the deviation from an uncertain region predictor.
AsU(e) increases from0 to 1, the examplee becomes more
likely to be a particular label.

Selection Criteria: For a given examplee, if U(e) ≤ η
(a threshold value), adde to the training set,T .

The theoretical justification and empirical studies of
stream-based active learning (including multi-class prob-
lems) can be found in [6].

Here, we use the binary classification problem, Image
(18 dimension data-set with 20 folds of training/testing par-
titions), from the benchmark collection in [12], to demon-
strate data stream active learning using TCM.

In our experiment, the learner is first provided with one
randomly chosen example from each class. Subsequently,
the learner is provided with a stream of unlabeled data. At
each trial, a new unlabeled point from the stream is intro-
duced to the learner. The data stream is of length 1300.

In Table 1, we compare the number of examples selected
by the active learner and their prediction accuracy at the
end of the data stream. About one-fifth of the total data is
selected using active learning and the performance is almost
as good as using all the examples in the data stream. The
total number of examples selected is much less than ran-
dom sampling and the accuracy estimate of active learning
is comparable.

Method No of selected Accuracy
examples Estimate

Standard 1300 95.65±0.56
Random 652.00±14.98 94.04±0.88
Active 273.30±49.27 94.33±1.05

Table 1. Comparison of 1) using all samples
(Standard), (ii) random sampling (Random)
and (iii) active learning (Active). Accuracy
and number of selected examples are com-
pared. Estimates are averaged over 20 trials.

7

Figure (3) shows that active learning using TCM has
very competitive performance compared to random sam-
pling when the same number of examples are selected.

Figure 3. Our active learning (upper solid
curve with error bars (dotted curve)) shows
very competitive performance compared to
the random sampling (lower solid curve)
when the same number of examples are se-
lected.

10. Conclusions

The use of transductive learning in temporal and real-
time data mining is hindered by the fact that existing trans-
duction methods are expensive and inefficient computa-
tion compared to inductive learning techniques. One ob-
jective of this paper is to encourage temporal data-mining
researchers to explore the use of transduction methods in
their works. In order to do so, we introduce a fast incre-
mental transduction method from an existing incremental
algorithm and a transduction method to overcome the inef-
ficiency problem of transduction.

Our transduction method is a fast incremental TCM
based on adiabatic incremental SVM. Our method is empir-
ically shown to be computationally efficient and its perfor-
mance is consistent with the standard TCM implementation.
Besides being a classifier, TCM provides additional useful
statistical information about the data that it has processed.
We demonstrate the usefulness and feasibility of such sta-
tistical information for stream-based active learning. These
information can be useful for other temporal and real-time
data mining.

We also show that incremental SVM by keeping histori-
cal support vectors when integrated into TCM do not have
consistent performance compared to the standard TCM im-

plementation. Hence, the integration of incremental algo-
rithm into transduction methods must be done with caution
to achieve both a reduction in the computational cost and a
competitive performance.

Transduction can, then, become a viable technique for
learning in data stream.

Acknowledgement

The first author would like to thank Dr. Volodya Vovk
for the interesting discussions. The first author would also
like to thank Dr Alex Gammerman and Dr. Volodya Vovk
for the manuscript of their book “Algorithmic learning in a
random world”.

References

[1] Cauwenberghs, G. and Poggio, T. Incremental support
vector machine learning, Advances in Neural Informa-
tion Processing Systems 13, MIT Press, 409-415, 2000.

[2] Gammerman A., Vovk. V. and Vapnik. V. Learning
by Transduction. Uncertainty in Artificial Intelligence,
Procs of the Fourteenth Conference (1998), Madison,
Wisconsin, July 1998, 148-155. 1998.

[3] Gammerman A. and Vovk V. Prediction algorithms
and confidence measures based on algorithmic random-
ness theory, Theoretical Computer Science 287, 209-
217, 2002.

[4] Fung G. and Mangasarian O.L. Incremental support
vector machine classification. Proceedings of the second
SIAM International Conference on Data Mining, SIAM,
247-260, 2002.

[5] Ho S.-S. and Wechsler H. Transductive Confidence Ma-
chine for active learning, Proceedings of Int. Joint Conf.
on Neural Networks, 2, 1435-1440, 2003.

[6] Ho S.-S. and Wechsler H. Stream-based active learn-
ing using algorithmic randomness theory. (Manuscript in
preparation).

[7] Kivinen J., Smola A. and Williamson R. Online learn-
ing with kernels, Advances in Neural Information Pro-
cessing Systems 14, MIT Press, 785-792, 2001

[8] Li, M., Vitanyi, P. An Introduction to Kolmogorov
Complexity and Its Applications, 2nd Edition. Springer-
Verlag, 1997.

[9] Musicant, D. R. NDC: Normally Distributed
Clustered Datasets, Computer Sciences De-
partment, University of Wisconsin, Madison,
http://www.cs.wisc.edu/dmi/svm/ndc/, 1998.

8

[10] Papadopolous H., Vovk V. and Gammerman A. Qual-
ified predictions for large data sets in the case of pattern
recognition. Proceedings of the International Conference
on Machine Learning and Applications (ICMLA ’02),
159-163, CSREA Press, 2002.

[11] Proedrou, K., Nouretdinov, I., Vovk, V., Gammerman,
A. Transductive confidence machine for pattern recog-
nition. ECML 2002, Helsinki, Finland, August 19-23,
2002. Proceedings. Vol. 2430. Springer-Verlag, pp. 381-
390, 2002

[12] Raetsch G., Onoda T. and Mueller K.R. Soft margins
for Adaboost, Machine Learning 42, 3, 287-320, 2001.

[13] Saunders, C., Gammerman, A., Vovk, V. Transduc-
tion with confidence and credibility. In: Proceedings of
the Sixteenth International Joint Conference on Artifi-
cial Intelligence, IJCAI 99, Stockholm, Sweden, July 31-
August 6, 1999. Vol. 2. pp. 722–726, 1999.

[14] Saunders C., Gammerman A. and Vovk V. Com-
putational efficient transductive machines, Algorithmic
Learning Theory, 11th International Conference, Syd-
ney, Australia, December 11-13, 2000, Lecture Notes in
Computer Science, 1968, Springer, 325-333, 2000.

[15] Syed N., Liu H. and Sung K.-K. Incremental learning
with support vector machines, Proc Workshop on sup-
port vector machines at IJCAI-99, Stockholm, Sweden,
1999.

[16] Vapnik, V. Statistical Learning Theory, Wiley-Series,
1998.

[17] Vovk V., Gammerman A. and Saunders C. Machine-
learning applications of algorithmic randomness. Pro-
ceedings of the Sixteenth Int. Conf. on Machine Learn-
ing (ICML 1999), 444-453, 1999.

[18] Vovk V. On-line confidence machines are well-
calibrated. Proc. 43th IEEE Symposium on Foundations
of Computer Science, 187-196, 2002.

[19] Vovk V, Gammerman A. and Shafer G. Algorithmic
learning in a random world (Manuscript), July 2004.

[20] Weerahandi, S. Exact statistical methods for data anal-
ysis. Springer-Verlag, 1994.

[21] Xiao, R., Wang, J. and Zhang, F. An approach to incre-
mental svm learning algorithm, 12th IEEE International
Conference on Tools with Artificial Intelligence (IC-
TAI’00), Vancouver, British Columbia, Canada, Novem-
ber 13 - 15, 2000.

9

