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Abstract— This paper describes a novel active learning strategy Il. BACKGROUND
using universal p-value measures of confidence based on algorith-
mic randomness, and transductive inference. The early stopping  Active learning is relevant to any activity involving choice
C][ift?”a flor afCti"e Iearnki]ng is based g” thehbials“’a”ance trade-  and uncertainty. The problem has been extensively studied but
off for classification. This corresponds to that learning instance " : : : ; o :
when the boundary bias becomes positive, and requires one to adqmonal innovation and progress is st|ll.wa.|t|ng. We briefly
switch from active fo random selection of learning examples. The 'eview some of the methods and their motivation. [18] suggests
sign for the boundary bias and the increase in the classification using a simple form of divide and conquer by selecting training
error are two manifestations of the same phenomena, i.e., over- examples that lie on or close to the separating hyper-plane.

ana usetuiness or our novel approach using a non-separaple . PO . .
two-class classification problem. Our hybrid learning strategy in Statistical Learning Theory (SLT) [20] in general, and

achieves competitive performance against standard nearest neigh-.SUppOrt Vector Machines (SVM){ in palrt'icullar. Basic to SLT
bor methods using much fewer training examples. is to what extent the generalization ability is affected by the

relationship between the capacity of the learning machine
and its confidence (intervals) for future prediction. Another
approach involves querying instances that split the current
The standard framework in machine learning in generafersion space into two equal parts as much as possible. It
and pattern classification, in particular, presents the leari@kes advantage of the duality of parameter space and feature
with a randomly sampled data set. There has been, howevespace [19], i.e., the geometry of the learning space, and is
growing interest in active learning where one has the flexibilifjpotivated by SLT and SVM.
to choose the data points that seem most relevant for thefhe margin of separation referred to above is closely
learning task. According to [19], one analogy is that a standaielated to local learning and nearest neighbor classifiers. As
passive learner is a student that sits and listens to a teacherexample, [8] have proposed making queries on the vertices
while an active learner is a student that asks the teaclodrthe induced Voronoi tessellation in the input space during
guestions, listens to answers and asks further questions baagitve learning. [11] have developed a “look-ahead” selective
upon the teachers response. The active learner selects actgamgpling methodology, which rather than considering the
or makes queries that influence what data and in what ordgrcertainty of the sample points in the input space, takes the
are added to the training set [4]. Many similar concepts aeffect of labeling of point on its neighborhood into account.
available for neural networks, e.g., conscience mechanisf®vard that end, one employs a random field model to estimate
[9]. The goals for active learning are two fold : (i) lesshe probability of its possible labels and compute the expected
computation (due to smaller training sets) without penalizingformation measure for the candidate sample.
the performance of the classifier, and (ii) less (computationalYet another form of learning, beyond induction, is transduc-
or manual) efforts and cost to label the training examples. tion. Given an unlabeled validation test, in addition to the train-
The major task for active learning is to decide how to seleittg set, the task now is to estimate the class for each unlabeled
the membership of the training set and in what order. This fi@ttern in order to construct the best classifier rule for both the
usually done by assessing to what extent the candidate sampieiing and validation tests. The Overall Risk Minimization
are informative, e.g., quality of information and discriminatiofORM) strategy has been proposed to solve the transduction
power. Toward that end many of the proposed methods drawpblem. It involves performing a comparative assessment of
from information theory, e.g., comparing how the entropy d@beling the pattern iteratively as one of the available class
the training ensemble would change after the inclusion essignments. ORM may improve on generalization and yield
each of the candidate samples. The entropy by itself, howevgrprovements when there is a significant deviation between
cannot capture effectively the margin or separation of tiige training and validation sets [2].
classifier. To address those concerns, this paper introduces &he constraints on the layout of the learning space and the
novel framework for active learning that is based upon algsearch for improved margins are addressed in this paper using
rithmic randomness and transduction learning. The feasibilityiversal p-value measures of confidence based on algorithmic
and usefulness of our novel approach is shown on a naandomness[21], and transductive inference [15]. Our novel
separable two-class classification problem. active learning methodology further requires some stopping

I. INTRODUCTION



criteria to prevent over-training. This corresponds to choosimgder such thatDj{j stands for thejth shortest distance in
between using the active learning selection mode, a randete sequenceD;;” is the jth shortest distance from sorted
selection mode, or stopping the generation of the learning s&équence of distances of exampligom other examples with

Our proposed method for this purpose is based on the biagferent classification fromy. Clearly, this is the ratio of the
variance trade-off for classification [6]. This corresponds t€um of the X nearest distances from the same class to the
that learning instance when the boundary bias becomes pesim of the X nearest distances from the other classes. The
tive, and requires one to switch from active to random selectigirangeness of an exemplar increases when the distance from
of learning examples. The sign for the boundary bias and th& exemplars of the same class becomes larger and when the
increase in the classification error are two manifestations @tance from the other classes becomes smaller. Note that
the same phenomena, i.e., over-training. The experimental déf@ 1-nearest neighbor rule is asymptotically at most twice as
presented later on validates our approach, and is basedbad as the Bayes error and that/dsncreases, thé-nearest
KNN-TCM, which is an augmented Transductive Confidenageighbor gets progressively closer to the Bayes error, assuming
Machine (TCM) using locality-based evidence, the K Nearessymptotic sampling [5]. For finite sampling, tHé-nearest
Neighbors (KNN). neighbor rule can be viewed as an (non-parametric density
estimation) attempt to estimate the a posteriori probabilities

' , ] , from the data sample [3].
Confidence measures suitable for active learning can beyefine now a p-value function: Z" — [0,1] by

based upon universal tests for randomness, or their approxima-

IIl. RANDOMNESS AND P-VALUES

_#{izla"'7n:ai2@n}

tion. A Martin-Lof randomness deficiency [10] based on such ¢
. . . .. . (Zly 22, 5 Zn)
tests is a universal version of the standard statistical notion of n
p-values. which satisfies
A functiont : Z™ — [0, 1] is ap-value functiorwith respect
[ ] p p Pn{(zla'zQ»"';zn):t(217227"'7zn)§7a}§7a

to any probability distributionP in Z if

1) foralln € N andr € [0,1], for any » € [0,1] and for any probability distributiorP in
n n Z, provided that the strangeness function returns the same
: <r}< . :
PHecZ Ha)<r}<r value for each example independent of the input order of
2) t is semicomputable from above, i.e. there exists examples to the strangeness function [12]. Assuming hat
computable sequence of computable functibnsZ —  is the testing example and, is the strangeness af, when

[0,1],i = 1,2,--- such thatt(z) = inf;t;(z) for all it is assigned a possible classificatidiz;, z2, - - -, z,) Will
2€Z be the p-value ok, of that classification, given the training
Universal tests for randomness are not computable a@¥Ampleszy, 2, -+, zn_1.

hence one has to approximate the p-values using non-universal analogy to to statistical significance testing, we test the
tests satisfying Item 1 in the above definition. In statistica@ull hypothesis “if we have an iid sequence of examples
significance testing, the p-value provides a measure on héw 22, - zn, then the distribution over all permutations of
well the data support or discredit the null hypothesis [22]. the sequence is uniform” against the alternative hypothesis
“the last element (or the testing examplg) is not generated
IV. TRANSDUCTION AND P-VALUE CONSTRUCTION by the same distribution as the rest of the sequence” [13].
We use the p-value construction in [7] and [15] to define latuitively, z, given classificatiore is not strange is our null
quality of information needed for data selection during actiieypothesist, while the alternative hypothesis; is z, given
learning. In particular they proposed a new algorithm farlassificationc is strange. For significance testing, the p-value
pattern recognition that outputs some measures of reliabiligyoften defined as the probability of observing a point in the
for every prediction made, in contrast to the current algorithnssimple space which can be considered as extreme as, or more
that output bare predictions only. The only assumption usedtreme than, the observed samples. During a significance
is that data items are independent and produced by ftiesting, the smaller the p-value, the greater the evidence against
same stochastic mechanism. Given a sequence of proximities null hypothesis.When the p-value is smaller than the
(distances) between the given training set and an unknosignificance level, the null hypothesiH, is rejected, and
sample probe, one guantifies to what extent the (classificatiame accepts the alternative hypothedis. Otherwise, the
decision taken is reliable, i.e., non-random. Toward that endll hypothesis is neither rejected nor accepted, while the
one defines the strangeness of the unknown sample protaternative hypothesis is rejected. Note that the hypothesis
with putative labely in relation to the rest of the training setthat we intend to prove is always assigned as the alternative

exemplars as: hypothesis.
Zf:l Df’j [15] predicts the class of a particular testing example for the
Qi = ZK DY largest “credibility” p-value from all possible (transductive)
i=1"1j

classifications, and assigning as its “confidence” value one
whereD? is the sequence of distances of examdi®m other minus the 2nd largest p-value. The confidence value indicates
examples with the same classificatignsorted in ascending how improbable the classifications other than the predicted



classification are and the credibility value shows how suitable « if D], > dist(t) , re-calculate the alpha value of

the training set is for the classification of that testing example. exemplart

V. QUALITY OF INFORMATION ~ end for

- Q — for every training exemplat classified as norni-do
Let p; be the p-values obtained for a particular example « if D7 > dist(t), re-calculate the alpha value of

of the possible classification = 1,---,n respectively. Sort exemplart
the sequence of p-values in descending order so that the first end for
two p-values, say; andp. are the two highest p-values with — Calculate alpha value for the new exemplar classified
classificationgi andk respectively. Without loss of generality, asj
WE assumep; tolbe the h'@!hef _p-value between th.e. t,WO p- — Calculate p-value for the new exemplar classified as
values.The predicted classification for the examplg isith j
p-valuep;. This value defines the credibility of the predicted end for

classification. Ifp; is not high enough,the prediction is rejected . Predict the class with the largest p-value

[17]. The lower p-valuepy, is used to calculate a confidence Output as confidence one minus the 2nd largest p-value
value on the predicted classification. Note that the smaller the’ P gestp

confidence the larger the ambiguity regarding the top choice.* Output as credibility the largest p-value

We consider four possible cases of p-valygsand py: VIl. BI1AS-VARIANCE TRADE-OFF FORCLASSIFICATION
« Case 1p; high andp;, low. Prediction has high credibility AND EARLY STOPPING
and high confidence value. The question addressed in this section is when to stop
« Case 2:p; high andp;, high. Prediction has high credi- being engaged in active learning. “There is a folklore that the
bility but low confidence value. generalization error decreases in an early period of learning,
« Case 3p; low andp;, low. Prediction has low credibility reaches a minimum and then increases as training goes on,
but high confidence value. while the training error monotonically decreases. Therefore,
» Case 4p; low andp, “high”. Prediction has low credi- it is considered better to stop training at an adequate time,
bility and low confidence value. a technique often referred to as early stopping.” [1]. They

In Case 4, since we know thal > py, pj, cannot be too further note that “the asymptotic gain in the generalization
high and may be close te;. Uncertainty in prediction occurs €rror is small if we perform early stopping, even if we have
in Case 2, 3 and 4. Note also that uncertainty of predictigi¥cess to the optimal stopping time”. When the number of

occurs ifp; =~ px. We define “closeness” training examples is finite, the true risk function is different
from the empirical risk function to be minimized. Methods to
I(zn) = |pj — px| avoid over-fitting include cross-validation, regularization and

R . . . model selection.
which indicates the quality of information possessed by the During active learning, there is a point in time that over-

\tEeszt:r% Z)t()?)rtpcl:?éséissiz:) t?]%ptrg;?:ege)’x::: gofh:lcdedritséz fit,rting phenomenon emerges when the classification error starts
g 9 pie. i?mcreasing. Early stopping is then required. Once the active

this example to the training data thus provides new Inf0rm"ﬂ'?er:'arning process is terminated there is the option to continue
about the structure of the data-set.

Duri tive | . " threshold valiar learning using random selection and eventually coming to a
uring active fearning, one spectiies a thresho'd va complete stop. This leads to our novel and hybrid framework,
I(z,), and if I(z,) < ¢, a decision is made to includs,

in the traini ¢ The threshold value i . twhich starts by (randomly) choosing the initial size and
g]mpi?ic;?mmg sel. The fhreshold vaiue in our experimen &%mposition of the training set, then actively choosing how to

augment the training set, early stopping, switching to random
VI. KNN-T RANSDUCTIVE CONFIDENCE MACHINE selection to_ eve_ntually stop and_freeze What ha§ been learned.
(KNN-TCM) Early-stqppmg is addressed using the bias-variance trade-off
for classification.
In this section, we give the algorithm for KNN-TCM  The mean squared prediction error (MSE) for the function
introduced in [15]. estimatef over a training seD at z is

o for i =1 to m (number of training examplars) 2 . 9,2 2
MSFE ,D))=1b ,D , D
— Find and storeD? and D, ¥ (@, D)) = bias™((z, D) + var(#(z, D))

« end for biasf(x,D) = f(x,D) — E(f(z, D))

« Calculate the alpha (strangeness) values, for all the traighere the bias reflects the sensitivity of the training Bet
ing exemplars to the choice of the function estimate while the variance

« Calculate the similaritydist vector as the distances ofreflects the sensitivity of the function estimatéo the training
the new exemplar from all the training exemplars setD. It is thus desirable to have both low squared-bias and

« for j =1 to C(number of classes) do low variance in order to minimize the MSE. Due to the bias-

— for every training exemplat classified ag do variance trade-off, minimizing both components concurrently



is not realistic. The learner tries to gain in an efficienThe objective of using less data exemplars and time to attain
fashion as much information as possible, concerning the targetmparable classification accuracy can now be achieved.
function, from the training seb.

In function estimation, the estimation error is additive in VIII. ACTIVE LEARNING (AL) ALGORITHM
bias and variance. On the other hand, there is a nonlinearq v new (AL) algorithm iteratively adds examples with
multiplicative relationship between bias and variance for Claﬁrgh quality of information, i.e., low/(z,)(see Sect. V), to
sification problem. [6] argues that given a training set, Iow eSfre cyrrent training sef’. The algorithm is initialized with
mation variance is more important than low squared estimatigg e training set?, which consists of 10% of the whole
bias. Simple but highly biased classification methods such #Sining set7'S, and quality of information threshold= 0.1.
naive Bayes and nearest neighbor are apparently succesgiyling each iteration, one selects one example for each of
using moderate to large training set, due to the fact that thgye, hossible classifications to ensure a balanced training set.
are stable methods with low variance. _ ___ The classification performance is derived using the calibration

In active learning, one starts with a relatively small initiaey for that iteration. When the stopping criteria is reached,
training set with the objective of gaining “maximum” informa-gne switches to random selection of examples. The algorithm
tion concerning the target function with the addition of SOM@rminates when no further performance improvements can be

new examples from a larger set of available data. One aig§iained, i.e., the difference in performance falls below some
at increasing the sensitivity of the function estimate with th@ashold.

addition of “informative” new examples. Our basic objective
is thus to lower the estimation bias fast in terms of the number
of new examples added to the training set and to stabilize the
learner so that it has a low variance. When and how soon
should one stop using our selection criteria which lowers the )
estimation bias?

Define theboundary biasas in [6]

1) Split the original training TS set into the proper training

set P and the calibration sef’ using the ratiol : 9,

such thatl’'S = PuU C andT = P

Choose (randomly), ¢ € C, and remove: from C, i.e.,

C=C\{c}

3) UseT to computel(c) (See Sect. VI).

4) if the quality of informationI(c) < ¢, ¢ augments
Ny ] A 1 the training setl" used to build the new (KNN-TCM)

b(f E(f)) = szgn(i - NEF) - 3) classifier,i.e." = T U {c}.

2
The sign of boundary bias affects the effect of variance to 5) Repeat Step 2, 3 and 4 till (early) stopping criteria is
reached.

the classification accuracy. As long &f, E(f)) < 0, one ) ) )
can decrease the variance to ensure an accurate classificatiofy) Select examples froni’ randomly, disregarding their
On the other hand, a non-negative boundary bias will result in ~ duality of information until performance cannot be fur-
a deterioration of accuracy given even a small variance. As a  ther improved.
consequence, one needs to find that point in time, during active
learning, shortly before the boundary bias becomes positive,
and switch from active to random selection. The sign for the The classifier used during testing are KNN-TCM [15],
boundary bias and the increase in mis-classification are twich couples the k-nearest neighbors (KNN) and the trans-
manifestations of the same phenomena, i.e., over-training. ductive confidence machine, and KNN. Three different ex-
Although [6] suggests lowering variance as a more impoperiments are done using random selection, active selection
tant factor in reducing classification error, he also pointed oahd hybrid selection. During active selection, all the training
that reducing estimation bias is a way to bring boundary biagample would iteratively augment the initial training set using
down to a negative value. the quality of information criteria. During hybrid selection,
Figure 2 and 3 display in a graphical form the fact thdhe early stopping criteria switches selection from active to
the classification error, while initially decreasing, starts ttandom. The switching point is determined from the observed
increase (around that point where one expects the boundimgrease in the classification error, which is related to the
bias to change from negative to positive). As the number &fver-bias” curve. For each of the three type of selection
“high information” examples increases in the training set, trexperiments we performed 100 trials and report the average
structure of the training set is no longer uniform. It becomegsults.
over-biased. This is the point in time one needs to stop activeThe experimental results reported are based on Ripley’s
learning and switch to random selection. For a fixed estimatisimulated data [16]. The noisy data-set comes from a non-
bias, the variance generally decreases by increasing the sizeggfarable (linearly and non-linearly) two-class classification
the training set. The use of random selection is how one caroblem (see Figure 1) where each population is an equal
decrease the variance and stabilize learning. During randamxture of two bivariate normal distribution. Each class con-
selection the estimation bias is also reduced although notsists of 125 points and the testing set consists of 1000
fast as during active selection. Active selection thus ensurepaints. It is reported [16] that the 5-nearest neighbor (5NN)
speedy reduction in estimation bias, while random selectiomethod and the Bayes rule yield 13% and 8.0% classification
ensures a reduction in variance for stabilization purposesrors, respectively, and that their standard deviation is around

IX. EXPERIMENTAL RESULTS



1%. The 5NN is referred to in our comparative performanadassification error for random selection is only about as good
evaluation experiments as the “standard” method. as the worst classification error of active selection for both
5NN-TCM and 5NN (steps 28-38 and 28-32, respectively).
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Fig. 1. Ripley’s two-class simulated data
Fig. 2. 5NN-TCM as the classifier: Comparing Hybrid, Active, Random
Selection of training set with Training using all examples

The initial training setP, of size 24, consists of 12 examples
randomly drawn from each class. The rest of the examples
from the original training set make up the calibration set used
for selection purposes. During the selection process, example X. CONCLUSIONS
is randomly chosen one at a time and using the selectiorThis paper describes a novel hybrid learning strategy that
criteria, a decision is made whether to add the example to tineludes active and random selection of training examples.
proper training set. During certain trials, the active and hybriTthe active learning component is based upon universal p-value
selection may exhaust the calibration set before the trainingzasures of confidence derived from the theory of algorithmic
set size limit which is set to 55. randomness, and transductive inference. The early stopping

From looking at the experimental data for active selectiamiteria for active learning is based on the bias-variance trade-
in Figure 2 and 3, one can see that there is an improvemenbifiifor classification. This corresponds to that learning instance
performance initially (steps 24-32), And then the performaneehen the boundary bias becomes positive, and requires one to
becomes worse. This is due to the over-bias phenomenswjtch from active to random selection of learning examples.
which changes the overall structure of the data-set as mdiee sign for the boundary bias and the increase in the classi-
new training examples accumulate over some specific regiditation error are two manifestations of the same phenomena,
in the input space. From Figure 2 and 3, one can also see that over-training. The experimental results presented show the
hybrid selection outperforms consistently random selectiorfeasibility and usefulness of our novel approach using a two-
The performance of hybrid selection using both 5NN-TCMlass classification problem that displays significant overlap.
and 5NN classifiers reaches the performance level of stand@rdr hybrid learning strategy achieves competitive performance
5NN very quickly. For 5SNN-TCM, by adding only 18 newagainst standard nearest neighbor methods using much fewer
examples to the initial training set, the classification erraraining examples.
drops to the 13% classification level of standard 5NN. The sizeCurrent research involves application of our hybrid active
of the training set (42) is less than twice the size of the initiééarning strategy on higher dimension data-sets and the estima-
training set. Random selection requires 59 training exampléisn of boundary bias using re-sampling or bootstrap method
while standard 5NN uses all the 250 training examples farhich will be used to replace our empirical search for the
a classification error of 13%. Similarly, hybrid selectionstopping criteria.
using as its classifier 5NN, requires only around 49 training Future research directions are related to expanding on the
examples for a classification error of 13%. We also observagibrid learning framework, additional fields of applications,
that during the early stage of the experiments the averagere experiments and meta-analysis of results. In particular,
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