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Abstract— This paper describes a novel active learning strategy
using universal p-value measures of confidence based on algorith-
mic randomness, and transductive inference. The early stopping
criteria for active learning is based on the bias-variance trade-
off for classification. This corresponds to that learning instance
when the boundary bias becomes positive, and requires one to
switch from active to random selection of learning examples. The
sign for the boundary bias and the increase in the classification
error are two manifestations of the same phenomena, i.e., over-
training. The experimental results presented show the feasibility
and usefulness of our novel approach using a non-separable
two-class classification problem. Our hybrid learning strategy
achieves competitive performance against standard nearest neigh-
bor methods using much fewer training examples.

I. I NTRODUCTION

The standard framework in machine learning in general,
and pattern classification, in particular, presents the learner
with a randomly sampled data set. There has been, however, a
growing interest in active learning where one has the flexibility
to choose the data points that seem most relevant for the
learning task. According to [19], one analogy is that a standard
passive learner is a student that sits and listens to a teacher,
while an active learner is a student that asks the teacher
questions, listens to answers and asks further questions based
upon the teachers response. The active learner selects actions
or makes queries that influence what data and in what order
are added to the training set [4]. Many similar concepts are
available for neural networks, e.g., conscience mechanisms
[9]. The goals for active learning are two fold : (i) less
computation (due to smaller training sets) without penalizing
the performance of the classifier, and (ii) less (computational
or manual) efforts and cost to label the training examples.

The major task for active learning is to decide how to select
the membership of the training set and in what order. This is
usually done by assessing to what extent the candidate samples
are informative, e.g., quality of information and discrimination
power. Toward that end many of the proposed methods draw
from information theory, e.g., comparing how the entropy of
the training ensemble would change after the inclusion of
each of the candidate samples. The entropy by itself, however,
cannot capture effectively the margin or separation of the
classifier. To address those concerns, this paper introduces a
novel framework for active learning that is based upon algo-
rithmic randomness and transduction learning. The feasibility
and usefulness of our novel approach is shown on a non-
separable two-class classification problem.

II. BACKGROUND

Active learning is relevant to any activity involving choice
and uncertainty. The problem has been extensively studied but
additional innovation and progress is still waiting. We briefly
review some of the methods and their motivation. [18] suggests
using a simple form of divide and conquer by selecting training
examples that lie on or close to the separating hyper-plane.
This approach draws from the emergence and growing interest
in Statistical Learning Theory (SLT) [20] in general, and
Support Vector Machines (SVM), in particular. Basic to SLT
is to what extent the generalization ability is affected by the
relationship between the capacity of the learning machine
and its confidence (intervals) for future prediction. Another
approach involves querying instances that split the current
version space into two equal parts as much as possible. It
takes advantage of the duality of parameter space and feature
space [19], i.e., the geometry of the learning space, and is
motivated by SLT and SVM.

The margin of separation referred to above is closely
related to local learning and nearest neighbor classifiers. As
an example, [8] have proposed making queries on the vertices
of the induced Voronoi tessellation in the input space during
active learning. [11] have developed a “look-ahead” selective
sampling methodology, which rather than considering the
uncertainty of the sample points in the input space, takes the
effect of labeling of point on its neighborhood into account.
Toward that end, one employs a random field model to estimate
the probability of its possible labels and compute the expected
information measure for the candidate sample.

Yet another form of learning, beyond induction, is transduc-
tion. Given an unlabeled validation test, in addition to the train-
ing set, the task now is to estimate the class for each unlabeled
pattern in order to construct the best classifier rule for both the
training and validation tests. The Overall Risk Minimization
(ORM) strategy has been proposed to solve the transduction
problem. It involves performing a comparative assessment of
labeling the pattern iteratively as one of the available class
assignments. ORM may improve on generalization and yield
improvements when there is a significant deviation between
the training and validation sets [2].

The constraints on the layout of the learning space and the
search for improved margins are addressed in this paper using
universal p-value measures of confidence based on algorithmic
randomness[21], and transductive inference [15]. Our novel
active learning methodology further requires some stopping



criteria to prevent over-training. This corresponds to choosing
between using the active learning selection mode, a random
selection mode, or stopping the generation of the learning set.
Our proposed method for this purpose is based on the bias-
variance trade-off for classification [6]. This corresponds to
that learning instance when the boundary bias becomes posi-
tive, and requires one to switch from active to random selection
of learning examples. The sign for the boundary bias and the
increase in the classification error are two manifestations of
the same phenomena, i.e., over-training. The experimental data
presented later on validates our approach, and is based on
KNN-TCM, which is an augmented Transductive Confidence
Machine (TCM) using locality-based evidence, the K Nearest
Neighbors (KNN).

III. R ANDOMNESS AND P-VALUES

Confidence measures suitable for active learning can be
based upon universal tests for randomness, or their approxima-
tion. A Martin-Lof randomness deficiency [10] based on such
tests is a universal version of the standard statistical notion of
p-values.

A function t : Zn → [0, 1] is ap-value functionwith respect
to any probability distributionP in Z if

1) for all n ∈ N andr ∈ [0, 1],

Pn{x ∈ Zn : t(x) ≤ r} ≤ r

2) t is semicomputable from above, i.e. there exists a
computable sequence of computable functionsti : Z →
[0, 1],i = 1, 2, · · · such thatt(z) = infi ti(z) for all
z ∈ Z

Universal tests for randomness are not computable and
hence one has to approximate the p-values using non-universal
tests satisfying Item 1 in the above definition. In statistical
significance testing, the p-value provides a measure on how
well the data support or discredit the null hypothesis [22].

IV. T RANSDUCTION AND P-VALUE CONSTRUCTION

We use the p-value construction in [7] and [15] to define a
quality of information needed for data selection during active
learning. In particular they proposed a new algorithm for
pattern recognition that outputs some measures of reliability
for every prediction made, in contrast to the current algorithms
that output bare predictions only. The only assumption used
is that data items are independent and produced by the
same stochastic mechanism. Given a sequence of proximities
(distances) between the given training set and an unknown
sample probe, one quantifies to what extent the (classification)
decision taken is reliable, i.e., non-random. Toward that end
one defines the strangeness of the unknown sample probei
with putative labely in relation to the rest of the training set
exemplars as:

αi =

∑K
j=1 Dy

ij∑K
j=1 D−y

ij

whereDy
i is the sequence of distances of examplei from other

examples with the same classificationy, sorted in ascending

order such thatDy
ij stands for thejth shortest distance in

the sequence.D−y
ij is the jth shortest distance from sorted

sequence of distances of examplei from other examples with
different classification fromy. Clearly, this is the ratio of the
sum of theK nearest distances from the same class to the
sum of theK nearest distances from the other classes. The
strangeness of an exemplar increases when the distance from
the exemplars of the same class becomes larger and when the
distance from the other classes becomes smaller. Note that
the 1-nearest neighbor rule is asymptotically at most twice as
bad as the Bayes error and that asK increases, theK-nearest
neighbor gets progressively closer to the Bayes error, assuming
asymptotic sampling [5]. For finite sampling, theK-nearest
neighbor rule can be viewed as an (non-parametric density
estimation) attempt to estimate the a posteriori probabilities
from the data sample [3].

Define now a p-value functiont : Zn → [0, 1] by

t(z1, z2, · · · , zn) =
#{i = 1, · · · , n : αi ≥ αn}

n

which satisfies

Pn{(z1, z2, · · · , zn) : t(z1, z2, · · · , zn) ≤ r} ≤ r

for any r ∈ [0, 1] and for any probability distributionP in
Z, provided that the strangeness function returns the same
value for each example independent of the input order of
examples to the strangeness function [12]. Assuming thatzn

is the testing example andαn is the strangeness ofzn when
it is assigned a possible classification,t(z1, z2, · · · , zn) will
be the p-value ofzn of that classification, given the training
examplesz1, z2, · · · , zn−1.

In analogy to to statistical significance testing, we test the
null hypothesis “if we have an iid sequence of examples
z1, z2, · · · , zn, then the distribution over all permutations of
the sequence is uniform” against the alternative hypothesis
“the last element (or the testing example)zn is not generated
by the same distribution as the rest of the sequence” [13].
Intuitively, zn given classificationc is not strange is our null
hypothesisH0 while the alternative hypothesisH1 is zn given
classificationc is strange. For significance testing, the p-value
is often defined as the probability of observing a point in the
sample space which can be considered as extreme as, or more
extreme than, the observed samples. During a significance
testing, the smaller the p-value, the greater the evidence against
the null hypothesis.When the p-value is smaller than the
significance level, the null hypothesisH0 is rejected, and
one accepts the alternative hypothesisH1. Otherwise, the
null hypothesis is neither rejected nor accepted, while the
alternative hypothesis is rejected. Note that the hypothesis
that we intend to prove is always assigned as the alternative
hypothesis.

[15] predicts the class of a particular testing example for the
largest “credibility” p-value from all possible (transductive)
classifications, and assigning as its “confidence” value one
minus the 2nd largest p-value. The confidence value indicates
how improbable the classifications other than the predicted



classification are and the credibility value shows how suitable
the training set is for the classification of that testing example.

V. QUALITY OF INFORMATION

Let pi be the p-values obtained for a particular example
of the possible classificationi = 1, · · · , n respectively. Sort
the sequence of p-values in descending order so that the first
two p-values, saypj andpk are the two highest p-values with
classificationsj andk respectively. Without loss of generality,
we assumepj to be the higher p-value between the two p-
values.The predicted classification for the example isj with
p-valuepj . This value defines the credibility of the predicted
classification. Ifpj is not high enough,the prediction is rejected
[17]. The lower p-value,pk, is used to calculate a confidence
value on the predicted classification. Note that the smaller the
confidence the larger the ambiguity regarding the top choice.

We consider four possible cases of p-values,pj andpk:

• Case 1:pj high andpk low. Prediction has high credibility
and high confidence value.

• Case 2:pj high andpk high. Prediction has high credi-
bility but low confidence value.

• Case 3:pj low andpk low. Prediction has low credibility
but high confidence value.

• Case 4:pj low andpk “high”. Prediction has low credi-
bility and low confidence value.

In Case 4, since we know thatpj > pk, pk cannot be too
high and may be close topj . Uncertainty in prediction occurs
in Case 2, 3 and 4. Note also that uncertainty of prediction
occurs ifpj ≈ pk. We define “closeness”

I(zn) = |pj − pk|

which indicates the quality of information possessed by the
testing example. AsI(zn) approaches0, the more uncertain
we are about classifying the testing example. The addition of
this example to the training data thus provides new information
about the structure of the data-set.

During active learning, one specifies a threshold valueε for
I(zn), and if I(zn) < ε, a decision is made to includezn

in the training set. The threshold value in our experiment is
empirical.

VI. KNN-T RANSDUCTIVE CONFIDENCEMACHINE

(KNN-TCM)

In this section, we give the algorithm for KNN-TCM
introduced in [15].

• for i = 1 to m (number of training examplars)

– Find and storeDy
i andD−y

i

• end for
• Calculate the alpha (strangeness) values, for all the train-

ing exemplars
• Calculate the similaritydist vector as the distances of

the new exemplar from all the training exemplars
• for j = 1 to C(number of classes) do

– for every training exemplart classified asj do

∗ if Dj
tk > dist(t) , re-calculate the alpha value of

exemplart
– end for
– for every training exemplart classified as non-j do
∗ if D−j

tk > dist(t), re-calculate the alpha value of
exemplart

– end for
– Calculate alpha value for the new exemplar classified

as j
– Calculate p-value for the new exemplar classified as

j

• end for
• Predict the class with the largest p-value
• Output as confidence one minus the 2nd largest p-value
• Output as credibility the largest p-value

VII. B IAS-VARIANCE TRADE-OFF FORCLASSIFICATION

AND EARLY STOPPING

The question addressed in this section is when to stop
being engaged in active learning. “There is a folklore that the
generalization error decreases in an early period of learning,
reaches a minimum and then increases as training goes on,
while the training error monotonically decreases. Therefore,
it is considered better to stop training at an adequate time,
a technique often referred to as early stopping.” [1]. They
further note that “the asymptotic gain in the generalization
error is small if we perform early stopping, even if we have
access to the optimal stopping time”. When the number of
training examples is finite, the true risk function is different
from the empirical risk function to be minimized. Methods to
avoid over-fitting include cross-validation, regularization and
model selection.

During active learning, there is a point in time that over-
fitting phenomenon emerges when the classification error starts
increasing. Early stopping is then required. Once the active
learning process is terminated there is the option to continue
learning using random selection and eventually coming to a
complete stop. This leads to our novel and hybrid framework,
which starts by (randomly) choosing the initial size and
composition of the training set, then actively choosing how to
augment the training set, early stopping, switching to random
selection to eventually stop and freeze what has been learned.
Early-stopping is addressed using the bias-variance trade-off
for classification.

The mean squared prediction error (MSE) for the function
estimatef̂ over a training setD at x is

MSE(f̂(x, D)) = bias2(f̂(x,D)) + var(f̂(x,D))

biasf̂(x, D) = f(x, D)− E(f̂(x,D))

where the bias reflects the sensitivity of the training setD
to the choice of the function estimatêf , while the variance
reflects the sensitivity of the function estimatef̂ to the training
setD. It is thus desirable to have both low squared-bias and
low variance in order to minimize the MSE. Due to the bias-
variance trade-off, minimizing both components concurrently



is not realistic. The learner tries to gain in an efficient
fashion as much information as possible, concerning the target
function, from the training setD.

In function estimation, the estimation error is additive in
bias2 and variance. On the other hand, there is a nonlinear
multiplicative relationship between bias and variance for clas-
sification problem. [6] argues that given a training set, low esti-
mation variance is more important than low squared estimation
bias. Simple but highly biased classification methods such as
naive Bayes and nearest neighbor are apparently successful,
using moderate to large training set, due to the fact that they
are stable methods with low variance.

In active learning, one starts with a relatively small initial
training set with the objective of gaining “maximum” informa-
tion concerning the target function with the addition of some
new examples from a larger set of available data. One aims
at increasing the sensitivity of the function estimate with the
addition of “informative” new examples. Our basic objective
is thus to lower the estimation bias fast in terms of the number
of new examples added to the training set and to stabilize the
learner so that it has a low variance. When and how soon
should one stop using our selection criteria which lowers the
estimation bias?

Define theboundary biasas in [6]

b(f,E(f̂)) = sign(
1
2
− f)(E(f̂)− 1

2
)

The sign of boundary bias affects the effect of variance to
the classification accuracy. As long asb(f,E(f̂)) < 0, one
can decrease the variance to ensure an accurate classification.
On the other hand, a non-negative boundary bias will result in
a deterioration of accuracy given even a small variance. As a
consequence, one needs to find that point in time, during active
learning, shortly before the boundary bias becomes positive,
and switch from active to random selection. The sign for the
boundary bias and the increase in mis-classification are two
manifestations of the same phenomena, i.e., over-training.

Although [6] suggests lowering variance as a more impor-
tant factor in reducing classification error, he also pointed out
that reducing estimation bias is a way to bring boundary bias
down to a negative value.

Figure 2 and 3 display in a graphical form the fact that
the classification error, while initially decreasing, starts to
increase (around that point where one expects the boundary
bias to change from negative to positive). As the number of
“high information” examples increases in the training set, the
structure of the training set is no longer uniform. It becomes
over-biased. This is the point in time one needs to stop active
learning and switch to random selection. For a fixed estimation
bias, the variance generally decreases by increasing the size of
the training set. The use of random selection is how one can
decrease the variance and stabilize learning. During random
selection the estimation bias is also reduced although not as
fast as during active selection. Active selection thus ensures a
speedy reduction in estimation bias, while random selection
ensures a reduction in variance for stabilization purposes.

The objective of using less data exemplars and time to attain
comparable classification accuracy can now be achieved.

VIII. A CTIVE LEARNING (AL) A LGORITHM

Our new (AL) algorithm iteratively adds examples with
high quality of information, i.e., lowI(zn)(see Sect. V), to
the current training setT . The algorithm is initialized with
some training setP , which consists of 10% of the whole
training setTS, and quality of information thresholdε = 0.1.
During each iteration, one selects one example for each of
the possible classifications to ensure a balanced training set.
The classification performance is derived using the calibration
set for that iteration. When the stopping criteria is reached,
one switches to random selection of examples. The algorithm
terminates when no further performance improvements can be
obtained, i.e., the difference in performance falls below some
threshold.

1) Split the original training TS set into the proper training
set P and the calibration setC using the ratio1 : 9,
such thatTS = P ∪ C andT = P

2) Choose (randomly)c, c ∈ C, and removec from C, i.e.,
C = C\{c}

3) UseT to computeI(c) (See Sect. VI).
4) if the quality of informationI(c) < ε, c augments

the training setT used to build the new (KNN-TCM)
classifier,i.e.,T = T ∪ {c}.

5) Repeat Step 2, 3 and 4 till (early) stopping criteria is
reached.

6) Select examples fromC randomly, disregarding their
quality of information until performance cannot be fur-
ther improved.

IX. EXPERIMENTAL RESULTS

The classifier used during testing are KNN-TCM [15],
which couples the k-nearest neighbors (KNN) and the trans-
ductive confidence machine, and KNN. Three different ex-
periments are done using random selection, active selection
and hybrid selection. During active selection, all the training
example would iteratively augment the initial training set using
the quality of information criteria. During hybrid selection,
the early stopping criteria switches selection from active to
random. The switching point is determined from the observed
increase in the classification error, which is related to the
“over-bias” curve. For each of the three type of selection
experiments we performed 100 trials and report the average
results.

The experimental results reported are based on Ripley’s
simulated data [16]. The noisy data-set comes from a non-
separable (linearly and non-linearly) two-class classification
problem (see Figure 1) where each population is an equal
mixture of two bivariate normal distribution. Each class con-
sists of 125 points and the testing set consists of 1000
points. It is reported [16] that the 5-nearest neighbor (5NN)
method and the Bayes rule yield 13% and 8.0% classification
errors, respectively, and that their standard deviation is around



1%. The 5NN is referred to in our comparative performance
evaluation experiments as the “standard” method.

Fig. 1. Ripley’s two-class simulated data

The initial training setP , of size 24, consists of 12 examples
randomly drawn from each class. The rest of the examples
from the original training set make up the calibration set used
for selection purposes. During the selection process, example
is randomly chosen one at a time and using the selection
criteria, a decision is made whether to add the example to the
proper training set. During certain trials, the active and hybrid
selection may exhaust the calibration set before the training
set size limit which is set to 55.

From looking at the experimental data for active selection
in Figure 2 and 3, one can see that there is an improvement in
performance initially (steps 24-32), And then the performance
becomes worse. This is due to the over-bias phenomenon,
which changes the overall structure of the data-set as more
new training examples accumulate over some specific regions
in the input space. From Figure 2 and 3, one can also see that
hybrid selection outperforms consistently random selection .
The performance of hybrid selection using both 5NN-TCM
and 5NN classifiers reaches the performance level of standard
5NN very quickly. For 5NN-TCM, by adding only 18 new
examples to the initial training set, the classification error
drops to the 13% classification level of standard 5NN. The size
of the training set (42) is less than twice the size of the initial
training set. Random selection requires 59 training examples,
while standard 5NN uses all the 250 training examples for
a classification error of 13%. Similarly, hybrid selection,
using as its classifier 5NN, requires only around 49 training
examples for a classification error of 13%. We also observed
that during the early stage of the experiments the average

classification error for random selection is only about as good
as the worst classification error of active selection for both
5NN-TCM and 5NN (steps 28-38 and 28-32, respectively).

Fig. 2. 5NN-TCM as the classifier: Comparing Hybrid, Active, Random
Selection of training set with Training using all examples

X. CONCLUSIONS

This paper describes a novel hybrid learning strategy that
includes active and random selection of training examples.
The active learning component is based upon universal p-value
measures of confidence derived from the theory of algorithmic
randomness, and transductive inference. The early stopping
criteria for active learning is based on the bias-variance trade-
off for classification. This corresponds to that learning instance
when the boundary bias becomes positive, and requires one to
switch from active to random selection of learning examples.
The sign for the boundary bias and the increase in the classi-
fication error are two manifestations of the same phenomena,
i.e., over-training. The experimental results presented show the
feasibility and usefulness of our novel approach using a two-
class classification problem that displays significant overlap.
Our hybrid learning strategy achieves competitive performance
against standard nearest neighbor methods using much fewer
training examples.

Current research involves application of our hybrid active
learning strategy on higher dimension data-sets and the estima-
tion of boundary bias using re-sampling or bootstrap method
which will be used to replace our empirical search for the
stopping criteria.

Future research directions are related to expanding on the
hybrid learning framework, additional fields of applications,
more experiments and meta-analysis of results. In particular,



Fig. 3. 5NN as the classifier: Comparing Hybrid, Active, Random Selection
of training set with Training using all examples

we plan to allow for the possibility that during the active
learning stage, candidate examples from the calibration set
whose quality of information is low and are thus elimi-
nated, can be reevaluated later on for possibly augmenting
the training set. As the landscape changes the quality of
information can change too. Another possible extension is
related to the choice of candidate examples and conscience
mechanisms during active learning. The order of presentation
is important and search diversity is important. As learning
involves search, we plan to explore ways and means to enhance
active learning using stochastic search, e.g., particle swarming
and tabu search.
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