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Abstract

In this paper we construct the linear support vector machine (SVM)
based on the nonlinear rescaling (NR) methodology (see [11, 14, 12] and
references therein). The formulation of the linear SVM based on the
NR method leads to an algorithm which reduces the number of support
vectors without compromising the classification performance compared to
the linear soft-margin SVM formulation. The NR algorithm computes
both the primal and the dual approximation at each step. The dual
variables associated with the given data-set provide important information
about each data point and play the key role in selecting the set of support
vectors. Experimental results on ten benchmark classification problems
show that the NR formulation is feasible. The quality of discrimination,
in most instances, is comparable to the linear soft-margin SVM while the
number of support vectors in several instances were substantially reduced.
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1 Introduction

In the past decade, the Support Vector Machine (SVM) [16] was among the
most widely used tools in statistical learning. Both the primal and dual SVM
formulations lead to solving quadratic programming (QP) problems in order to
find a separating hyperplane. The normal vector of the separating hyperplane
w is conveniently represented as a linear combination of the support vectors
[16]. The reduction of the support vectors in this representation leads to the
reduction of classification time and therefore highly desirable [3, 10, 17]. When
the given binary-class data-set can be separated, solving a QP problem finds a
hyperplane (hyper-surface) that separates the two classes with maximum margin
[2]. In the non-separable case, there is a trade-off between the margin size and
the number of data points in the data-set which cannot be separated. In the
case of the standard soft-margin SVM formulation, the Lagrange multipliers
(dual variables) corresponding to the data points inside the margin have a fixed
value which is equal to the penalty parameter [5]. All the data points within the
margin are support vectors. They all have the same Lagrange multipliers in the
representation of the normal vector of the separating hyperplane equal to the a
priori given penalty parameter. It leads to a large number of support vectors and
thus compromises the sparsity of the representation of w. Several methods have
been suggested to reduce the number of support vectors [3, 10, 17]. However,
these approaches are still based on the soft-margin SVM and therefore include
the upper bounds on the dual variables in the formulations, a restrictive factor
for finding a sparse representation of w.

The main contribution of this paper is the nonlinear rescaling (NR) for-
mulation of the SVM that substantially reduced the number of support vectors
without compromising the quality of discrimination. Moreover, this formulation
does not require a pre-defined penalty parameter, which is a critical factor in
the soft-margin SVM formulation. When the classification problem is separable,
the solution from the NR formulation is identical to the optimal margin SVM.

The distinct characteristic of the NR theory [11, 14] is the use of the La-
grange multipliers as the main driving force which insures the convergence of
NR methods for solving constrained optimization problems. The positive scal-
ing parameter can be either fixed or increased from step to step. By increasing
the scaling parameter, one can improve the rate of convergence. The fundamen-
tal differences between NR methods and the interior point methods [9] is that
the NR methods do not require finding an interior starting point and they do
not keep the primal sequence inside the feasible set. Moreover, the NR methods
are exterior point methods by nature in which the Lagrange multipliers carry
important information throughout the computational process.

In the NR formulation of SVM, the Lagrange multipliers characterize the
“cost” of the “non-separability”. The “large” Lagrange multipliers that stand
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out among all the Lagrange multipliers correspond to the data points that are
“most certain” on the “wrong side” of the separating hyperplane. In fact, some-
times one can consider such data points as “noise” which have to be eliminated
from the input data [6]. On the other hand, the “small” Lagrange multipli-
ers identify the data points which has practically no impact on the separating
hyperplane. They can also be eliminated. To this end, the Lagrange multi-
pliers enable us to identify the data points which are critical in defining the
discrimination rule and at the same time to reduce substantially the number of
support vectors. The experimental results show that in most cases the SVM
based on the NR method (NR-SVM) reduces the number of support vector sub-
stantially without compromising the quality of discrimination compared to the
linear soft-margin SVM.

The paper is organized as follows. In the next section, we review the basic
SVM problem and show that due to the problem formulation the Lagrange
multipliers for all the data points which cannot be separated have the same value
equal to the a priori chosen penalty parameter. In Section 3, we describe the
NR method and review the basic convergence results. In Section 4 we introduce
the SVM formulation based on NR theory and applied the NR method to solve
the SVM problem. In Section 5, we compare the performance of NR-SVM with
the linear soft-margin SVM on ten benchmark problems.

2 Background

For a given set of labeled data points

{(a1, y1), · · · , (an, yn)}

where yi ∈ {−1, 1} and ai ∈ <m, the soft-margin SVM problem [16] consists of
finding the triple (w∗, ξ∗, b∗) ∈ <m ×<n ×< that minimizes

u =
1
2
||w||2 + C

n∑

i=1

ξi (1)

subject to the constraints

yi(w · ai + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n (2)

where w is the normal vector for the “separating” hyperplane, (w, x) + b = 0,
the vector ξ = (ξ1, · · · , ξn) defines the constraints violation and C > 0 is an
empirically defined penalty parameter, which is used to penalize the constraint
violations.

Very often instead of (1)–(2) the dual problem [16] is used. The dual QP
consists of maximizing

v = −1
2

n∑

i=1

n∑

j=1

yiyjαiαj(ai · aj) +
n∑

i=1

αi (3)
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subject to

n∑

i=1

yiαi = 0, (4)

0 ≤ αi ≤ C, i = 1, · · · , n. (5)

From the primal solution (w∗, ξ∗, b∗) and the dual solution α∗ = (α∗1, · · · , α∗n),
we have

u∗ = v∗, (6)

and the following complementarity conditions are satisfied

ξ∗i > 0 ⇒ α∗i = C, (7)
ξ∗i = 0 ⇐ 0 ≤ α∗i < C,

and

w∗ =
n∑

i=1

α∗i yiai. (8)

For the data points on the margin, the corresponding components in the
dual vector α∗ = (α∗1, · · · , α∗n) are between 0 and C. The dual values of the data
points outside the margin are zero. It follows from (7) that all non-separable (i.e.
within the margin) data points have the same dual value, which is equal to the
a priori chosen penalty parameter C. In other words, all Lagrange multipliers
in the representation (8) which correspond to the data points within the margin
have the same C value.

In the next section, we describe the general NR methods and in section 4,
we specify the NR approach for the SVM which does not require an a priori
chosen penalty parameter C. We would like to emphasize that the NR method
converges for any fixed scaling parameter k > 0 due to the Lagrange multipliers
update [7, 14]. Therefore there is no need to predefine the penalty parameter.
The Lagrange multipliers characterize the “cost” of the constraint violation. At
each step the Lagrange multipliers provide extra information about the non-
separability of the data points and at the same time they indicate the data
points that do not affect the discrimination rule and can be eliminated.

3 Nonlinear Rescaling Method

Let −∞ < t0 < 0 < t1 < ∞. We consider a class Ψ of twice continuously
differentiable functions ψ : (t0, t1) → <, which satisfy the following properties:

1. ψ(0) = 0, ψ′(0) = 1;

2. ψ′(t) > 0;
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3. ψ′′(t) < 0.

The function ψ ∈ Ψ is used to transform the constraints of a given constrained
optimization problem into an equivalent set of constraints.

Let f : <m → < be convex, and ci : <m → <, i = 1, · · · , n be concave
functions. We consider the following convex optimization problem

x∗ ∈ X∗ = Arg min{f(x)|x ∈ Ω} (9)

where Ω = {x ∈ <m : ci(x) ≥ 0, i = 1, · · · , n}.
It follows from properties 1.–3. that for any given scaling parameter k > 0,

we have

Ω = {x : k−1ψ(kci(x)) ≥ 0, i = 1, · · · , n}

Therefore, for any k > 0, the following problem

x∗ ∈ X∗ = Arg min{f(x)|k−1ψ(kci(x)) ≥ 0, i = 1, · · · , n} (10)

is equivalent to the original convex optimization problem (9).
The classical Lagrangian L : <m ×<n

+ ×<++ −→ <

L(x, λ, k) = f(x)− k−1
n∑

i=1

λiψ(kci(x)), (11)

which corresponds to problem (10) is the main tool in developing NR methods
for solving the constrained optimization problem.

In our experiments, we use the shifted logarithmic barrier function ψ(t) =
ln(t+1), which leads to the modified barrier functions theory and methods [11].
Each step of the NR method alternates finding an unconstrained minimizer of
L(x, λ, k) in <m and the Lagrange multipliers update. The scaling parameter
can be fixed or one can change k at each iteration. We consider the version of
the NR method with a fixed scaling parameter.

Let λ0 ∈ <n
++ be the initial Lagrange multiplier vector and the positive

scaling parameter k is fixed. Let us assume that the primal-dual pair (xs, λs) ∈
<m ×<n

++ has been found already. One step of NR method consists of finding:

xs+1 : ∇xL(xs+1, λs, k) = ∇f(xs+1)−
n∑

i=1

ψ′(kci(xs+1))λs
i∇ci(xs+1) = 0 (12)

and updating the Lagrange multipliers by the formula:

λs+1
i = ψ′(kci(xs+1))λs

i , i = 1, · · · , n. (13)

From (12)–(13), we have

∇xL(xs+1, λs, k) = ∇xL(xs+1, λs+1) = 0 (14)
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where L(x, λ) = f(x) − ∑
λici(x) is the classical Lagrangian for the original

problem (9).
Therefore,

xs+1 = arg min{L(x, λs+1)|x ∈ <m}
and

d(λs+1) = L(xs+1, λs+1)

where d(λ) = infx∈<m L(x, λ) is the dual function.
The NR method (12)–(13) solves simultaneously the primal problem (9) and

the following dual problem

d(λ∗) = arg max{d(λ)|λ ∈ <n
+}. (15)

The following theorems establish the convergence properties of the NR method
(12)–(13).

Theorem 1 [11] If the standard second order optimality conditions are satisfied
and f , ci, i = 1, · · · , n are smooth enough then there is k0 > 0 large enough that
for any k ≥ k0, the following bounds hold

a) ||xs+1 − x∗|| ≤ ck−1||λs − λ∗||
b) ||λs+1 − λ∗|| ≤ ck−1||λs − λ∗|| (16)

and the constant c > 0 is independent of k.

Theorem 2 [14] If (10) is a convex programming problem, Slater’s conditions
are satisfied and X∗ is a bounded set, then for any k > 0 the NR method (12)–
(13) generates the primal-dual sequence {xs, λs} such that:

1. lims→∞ λs = λ∗,

2. lims→∞ f(xs) = lims→∞ d(λs) = f(x∗) = d(λ∗),

3. for any converging subsequence {xse},
lim

se→∞
xse = x∗ ∈ X∗.

The NR method (12)–(13) requires finding an unconstrained minimizer xs+1

of L(x, λs, k) at each step which is generally speaking an infinite procedure. To
make the NR method (12)–(13) practical we replace the minimizer xs+1 by its
approximation x̄s+1, which one can find using the stopping criterion introduced
in [11]. The approximation x̄s+1 can be found in finite number of Newton’s
steps applied for minimization of L(x, λs, k) in x. Replacing xs+1 by x̄s+1 does
not compromise both the convergence and the rate of convergence of the NR
method.

In the next section, we introduce the NR formulation for the SVM and
describe the NR method for solving the SVM problem.
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4 Nonlinear Rescaling SVM (NR-SVM) Formu-
lation

For a given set of labeled data points {(ai, yi) ∈ <m+1}, i ∈ I = {1, · · · , n}, yi ∈
{−1, 1}, to construct a SVM means to find a hyperplane h = h(w, b) = {x :
(w, x)− b = 0} such that the sets I+ = {i : (ai, 1)} and I− = {i : (ai,−1)} will
be separated with a maximum margin.

For every i ∈ I+ in the “positive” halfspace, we consider the distance
d(ai, h) = (w, ai)−b ≥ 0 from ai, i ∈ I+ to the hyperplane h and for every i ∈ I−
in the “negative” halfspace, we consider the distance d(ai, h) = −(w, ai) + b ≥
0, i ∈ I−. To find the hyperplane h, which separates set I+ from I− with
maximum margin, one has to solve the following problem:

∆∗ = max
||w||2=1,b∈<

min
i∈I

d(ai, h)

By introducing ∆ = mini∈I d(ai, h), one can rewrite the problem of finding ∆∗

as follows:

∆ → max (17)

subject to

ci(x) ≡ ci(w, b, ∆) = (w, ai)− b−∆ ≥ 0, i ∈ I+ (18)
ci(x) ≡ ci(w, b, ∆) = −(w, ai) + b−∆ ≥ 0, i ∈ I−, (19)

||w||2 = 1 (20)

where I+ and I− consist of positively and negatively labeled data points respec-
tively.

To describe the NR method for solving the problem (17)–(20), we consider
an equivalent problem. For any given positive parameters k > 0, τ > 0 and a
transformation ψ ∈ Ψ, the following problem:

−τ∆ → min (21)

subject to

k−1ψ(·) = k−1ψ(kci(x)) ≥ 0, i ∈ I+ (22)
k−1ψ(·) = k−1ψ(kci(x)) ≥ 0, i ∈ I− (23)

1
2

(||w||2 − 1
)

= 0 (24)

is equivalent to (17)–(20).
The classical Lagrangian

L(·) = L(w, b, ∆, λ, γ, τ) (25)
= −τ∆− k−1Σi∈I+λiψ(kci(x))

−k−1Σi∈I−λiψ(kci(x)) + γ
1
2

(||w||2 − 1
)
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for the problem (21)–(24) is our basic tool. We use the Lagrangian L(·) to
describe the NR-SVM.

The NR method for solving the problem (21)–(24) consists of finding the
minimum of the Lagrangian (25) for the equivalent problem in x = (w, b, ∆),
and then updating the Lagrange multipliers λ = (λ1, · · · , λn) and τ . The scaling
parameter k can be fixed or updated at any iteration. Let ε > 0 be small
enough. We describe one step of the NR method for solving (21)–(24) given a
fixed positive scaling parameter k.

1. Find
x̂ = arg min{L(x, λ, γ, τ, k)|x ∈ <m+2} (26)

which is equivalent to solving the following system of equations:

∇wL(·) = −Σi∈I+λiψ
′(·)ai + Σi∈I−λiψ

′(·)ai + γw = 0 (27)
∇∆L(·) = −τ + Σi∈I+λiψ

′(·) + Σi∈I−λiψ
′(·) = 0 (28)

∇bL(·) = Σi∈I+λiψ
′(·)− Σi∈I−λiψ

′(·) = 0 (29)

2. Update the Lagrange multipliers by the formula:

λ̂i = λiψ
′(·), i ∈ I+

⋃
I− (30)

3. Find γ̂ from ||ŵ||2 = 1 where

ŵ = γ−1
(
Σi∈I+ λ̂iai − Σi∈I− λ̂iai

)
(31)

4. Compute

τ̂ = Σi∈I+ λ̂i + Σi∈I− λ̂i (32)

5. Set

λ̂ := (λ̂iτ̂
−1, i = 1, · · · , n) (33)

6. If ||λ− λ̂|| > ε, then set (x, λ, γ, τ) := (x̂, λ̂, γ̂, τ̂) and go to step 1.
Else x∗ = x, λ∗ = λ.

We use the Lagrange multipliers λ∗ ∈ <n to select the support vectors by
eliminating vector ai when 0 < λi ≤ ε. The NR method (26)–(33) is the basis
for the NR-SVM algorithm.

We would like to point out that if the training set I is such that the sub-
sets (ai, yi), i ∈ I− and (ai, yi), i ∈ I+ can be separated, then it follows from
the formulation (17)–(20) that ∆∗ > 0 and the maximal margin is 2∆∗. The
discriminating rule is identical to the classical SVM.

If the subsets (ai, yi), i ∈ I− and (ai, yi), i ∈ I+ cannot be separated, then
∆∗ < 0.
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Figure 1: Non-separable Case.
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In such case the classical SVM allows finding a hyperplane, which partially
“separates” the sets I+ and I− (see Figure 1) and all vectors within the mar-
gin will have the same Lagrange multipliers λi = C > 0. The NR-SVM for-
mulation provides a particular Lagrange multiplier for each vector. Moreover,
lims→∞ λs = λ∗. Therefore, the Lagrange multipliers λs

i → 0 can be eliminated.
We would like to comment on the computational complexity of both the soft-

margin SVM and the NR approach. The soft-margin SVM solves a quadratic
programming problem. If based on the interior-point method, the soft-margin
SVM has a polynomial complexity O(

√
m log ε−1), where ε is the accuracy of

the solution. The complexity of the NR algorithm for the quadratic problem
depends on the properties of the problem at the solution. It can be as worse
as O(

√
m log2 ε−1) and as good as O(log ε−1), where ε is the accuracy of the

solution. More details on the complexity of the NR algorithms are discussed in
[8, 13].

5 Experimental Results

We perform experiments to compare the NR-SVM and the linear soft-margin
SVM in terms of the reduction in the number of support vectors and the clas-
sification error. We used the Matlab interface of LIBSVM 2.81 [4] for the SVM
implementation (C-SVM) with C taking the values: 1, 10, 100, and 1000, with-
out kernels, i.e. linear SVM. We compare NR-SVM performance with the best
performance of linear C-SVM using the various C values. To evaluate and
compare the performance of our NR-SVM with the linear C-SVM, we use ten
binary classification problems from [15] based on the data-sets from [1]. For
each benchmark problem, there are 100 realizations each.

The experimental results are shown in Table 1. The quality of discrimination
(based on the test error rate), in most instances, is comparable to the linear C-
SVM while the number of support vectors in several instances were substantially
reduced. Similar to our experimental results, it has been observed in [10, 17]
that a reduction in the number of support vectors increases the test error rate
slightly.

6 Conclusions

In this paper we construct the linear support vector machine (SVM) based on
the NR methodology. The formulation of the NR-SVM leads to the algorithm
which reduces the number of support vectors without compromising the classi-
fication performance compared to the linear soft-margin SVM formulation. In
particular, the NR-SVM does not require a predefined penalty parameter. One
notes that vectors which have very small Lagrange multipliers, can be removed
at each NR step to improve the computational efficiency. Moreover, when a
vector point has a much higher Lagrange multiplier, one can suspect that either
the vector point is “noise” or it is wrongly labeled.
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NR-SVM Linear C-SVM
Dataset Size Dimension SV Error C SV Error
Banana 400 2 4.19 0.44 10 365.77 0.45

Breast-Cancer 200 9 44.70 0.31 1 121.26 0.29
Diabetis 468 8 29.04 0.26 1000 241.49 0.23
German 700 20 102.00 0.29 100 378.62 0.24
Heart 170 13 17.64 0.20 1 61.87 0.17

Ringnorm 400 20 37.08 0.29 1 221.86 0.25
Splice 1000 60 339.45 0.17 1 347.80 0.16

Thyroid 140 5 24.08 0.15 100 33.99 0.10
Titanic 150 3 35.64 0.24 1 68.43 0.23

Waveform 400 21 34.00 0.15 1 110.57 0.13

Table 1: Comparison of NR-SVM and Linear C-SVM on ten benchmark prob-
lems. (SV (Number of support vectors) and Error (Number of testing examples
wrongly classified/Number of testing examples) are averaged over 100 trials.)

The distinct characteristics of the NR method is the ability to associate with
each vector point a Lagrange multiplier, which measures the “non-separability”
of this vector point. It allows the use of the SVM approach for medical diagnostic
and drug discovery purposes. In particular, when it comes to medical diagnostic
we use the given vector points together with the vector point that represents
a new medical case. One assigns a positive label to the new vector point and
solves the NR-SVM. Then one solves the NR-SVM again when the vector point
is assigned with a negative label. In the case when the Lagrange multipliers of
this new vector point are substantially different for the two labels, for example
“very small” value for positive label and “very large” value for negative label,
then we have a double conformation that the medical case under consideration
belongs to the positive set.
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