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Abstract

In this paper, we examine the availability and utility of idle memory in workstation clusters. We attempt to answer
the following questions. First, how much of the total memory in a workstation cluster can be expected to be idle? This
provides an estimate of the opportunity for hosting guest data. Second, how much memory can be expected to be idle
on individual workstations? This helps determine the recruitment policy – how much memory should be recruited on
individual hosts? Third, what is the distribution of memory idle-times? This indicates how long guest data can be
expected to survive; applications that access their data-sets frequently within the expected life-time of guest data are
more likely to benefit from exploiting idle memory. Fourth, how much performance improvement can be achieved
for off-the-shelf clusters without customizing the operating system and/or the processor firmware? Finally, how long
and how frequently might a user have to wait to reclaim her machine if she volunteers to host guest pages on her
machine? This helps answer the question of social acceptability. To answer the questions relating to the availability
of idle memory, we have analyzed two-week long traces from two workstation pools with different sizes, locations,
and patterns of use. To evaluate the expected benefits and costs, we have simulated five data-intensive applications
(0.5 GB-5 GB) on these workstation pools.

1 Introduction

Idle workstations have traditionally been harvested for their cycles. Exploiting idle workstations for hosting guest

computation has been a popular research area. Systems that utilize idle workstations for running sequential jobs

have been in production use for many years [15]; there has been significant amount of research on exploiting idle

workstations for hosting parallel computations (for e.g. [1, 4, 5]). With the current growth in the number and the size

of data-intensive tasks, exploiting idle workstations for theirmemoryis an attractive option, especially for programs

with transient peaks in their memory requirements or for data-intensive programs that are run infrequently.

Although the price of memory has fallen dramatically in recent years, installing large amounts of memory on a

single machine remains expensive for two reasons. First, memory is cheap only in commodity sizes (32/64/128 MB);

there is a large premium for larger sizes. For example, a 512 MB PC100 SDRAM DIMM costs $3900 [17] whereas

four 128 MB PC100 SDRAM DIMMs cost $600 [21]. Second, commodity-priced machines have a limit on the

amount of memory; server-class machines that can have larger memories come at a substantial premium.

Several research projects have proposed using memory of idle workstations for hosting guest data [7, 8, 11, 12,

14, 20, 22, 27]. Iftode et al [14] propose extending the memory hierarchy of multicomputers by introducing a remote
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memory server layer; Felten and Zahorjan [12] examined the idea of using remote client memory instead of disk for

virtual memory paging; Schilit and Duchamp [23] investigated the use of remote memory paging for diskless portable

machines; Dahlin et al [8] and Sarkar et al [22] propose schemes to use idle memory to increase the effective file cache

size; Feeley et al [11] describe a low-level global memory management system that uses idle memory to back up both

file pages and virtual memory page.

These efforts have focused on developing efficient mechanisms for hosting guest data. In this paper, we examine

the opportunityfor hosting guest data in real workstation clusters. We attempt to answer the following questions.

First, how much of the total memory in a workstation cluster can be expected to be idle? This provides an estimate

of the opportunity for hosting guest data. Second, how much memory can be expected to be idle on individual

workstations? This helps determine the recruitment policy – how much memory should be recruited on individual

hosts? Third, what is the distribution of memory idle-times? This indicates how long guest data can be expected

to survive; applications that access their data-sets frequently within the expected life-time of guest data are more

likely to benefit from exploiting idle memory. Fourth, how much performance improvement can be achieved for off-

the-shelf clusters without customizing the operating system and/or the processor firmware? While the performance

improvement for off-the-shelf clusters is likely to be smaller than that for customized clusters, it would be available to

a much larger user community. Finally, how long and how frequently might a user have to wait to reclaim her machine

if she volunteers to host guest data on her machine? This helps answer the question of social acceptability – whether

users will feel comfortable enough with the performance of the system to agree to participate.

To answer the questions relating to the availability of idle memory, we have analyzed two-week long traces from

two workstation clusters with different distributions of memory and different patterns of use. To evaluate the expected

benefits and costs, we have simulated the execution of three real data-intensive applications (out-of-core LU decompo-

sition, decision support queries on a sales database, data-mining for buying patterns in retail transactions and searching

a large set of files) and two synthetic applications with memory footprints between 0.5 GB and 5 GB.

We first examine the memory availability questions. Section 2 describes the methodology used to monitor the

memory usage in a workstation cluster, and the metrics computed to estimate the opportunity for hosting guest memory.

Next, we evaluate how much performance improvement can be achieved without customizing the operating system

and/or the processor firmware? In Section 3, we describe the framework assumed by our simulation experiments, the

applications used in the study, and the system and workload models used in our simulations. Section 4 presents our

results. Finally, we examine the impact of hosting guest data on the primary users of the workstations.

2 Memory availability

To determine the availability of idle memory for hosting guest data, we have analyzed detailed two-week long traces

(Sep 7-21) from two workstation clusters. These traces were gathered over from 52 workstations in two different

clusters. We used these traces to determine a detailed breakdown of memory usage and availability in individual

workstations, in machines with equal amounts of memory and in both the clusters. We first describe the traces and

how they were collected. We then present memory usage and availability metrics for these traces. Finally, we present

the distribution of memory idle-times.

2.1 Traced clusters

The first cluster,clusterA , consists of 29 Sun workstations running Solaris 2.5.1/2.6 at the University of. These

workstations are used by faculty and graduate students for personal purposes as well as for running large compute-
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Cluster 32MB 64MB 64-128MB 128-256MB 256-512MB 1024MB mean median

clusterA – 6 15 5 2 1 179MB 128MB
clusterB 8 13 1 1 – – 62MB 64MB

Table 1: Distribution of physical memory on the hosts in the traced clusters.

intensive jobs. Most of the workstations in this cluster had 128 MB or more (Table 1 presents the memory distribution).

The total memory in this cluster was 5.2 GB. We use this cluster as an example of clusters with large memories.

The second cluster,clusterB , consists of 23 Sun workstations running Solaris 2.6 atUniversity. Most of

these workstations are used by faculty and researchers for personal purposes; a couple of the larger machines are also

used for running compute-intensive jobs. Most of the workstations in this cluster had 64 MB or less (Table 1 presents

the memory distribution). The total memory in this cluster was 1.4 GB. We use this cluster as an example of clusters

with small memories.

2.2 Trace collection

For each workstation, we monitored seven kinds of information: (1) user activity, (2) CPU load, (3) kernel memory

usage, (4) list of active processes, (5) process memory usage, (6) list of open files, (7) contents of the file cache.

� User activity: we tracked user activity by checking the access times for the Solaris keyboard and mouse devices

files.1

� CPU load: we tracked CPU load using/usr/bin/w . We use the average number of jobs over the last 5

minutes as the measure of load.

� Kernel memory usage: we tracked kernel memory usage using two commands:/usr/sbin/prtconf

and /usr/bin/netstat -k | grep pp kernel .2 The first command is used to determine the total

memory installed in the system. The second command is used for two purposes. First, it reports the amount

of memory available for allocation (reported astotalpages ). The difference between the total physical

memory and memory available for allocation is used for the initial load of the kernel [6]. Second, it reads

thesystem pages kernel statistics structure to determine the number of pages used by the kernel from this

available pool [6] (see Figure 1 for sample output from this command).

� List of active processes:we usedps to determine the list ofactiveprocesses. Every process that is reported by

ps to consume non-zero CPU time was marked as anactiveprocess. In addition, all periodic daemons and the X

server are assumed to be always be active and are marked as such. Processes created for capturing information

for these experiments were not considered active.

� Physical memory used by active processes:we determine the physical memory used by active processes

using themempsandpmem3 utilities provided by RMCmem, the experimental kernel module made available

by Richard McDougal [16]. Themempsutility provides information about the total physical memory used by

1The keyboard device file is /devices/pseudo/conskbd0:kbd and the mouse device file is /devices/pseudo/consms0:mouse. Solaris updates the
access times of these files to reflect user activity.

2The-k option tonetstat is not documented on its man page. We thank Adrian Cockcroft for describing it in his column inSunWorld Online.
3This utility has been integrated into Solaris 2.6 as/usr/proc/bin/pmap .
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a list of processes. For each process in the list, it provides a breakdown of the resident set size into shared and

private regions. Thepmemutility provides a detailed breakdown of the resident set of a process into individual

segments (see Figure 2 for a snippet ofpmemoutput). Based on the information provided by these processes,

we were able to compute a fairly accurate estimate of the total memory used by all active processes.

� List of open files: we used thelsof 4 utility to obtain the list of open files for each active process.

� Contents of the file cache:we used thememps -mutility from the RMCmem package to determine the files

being cached by the OS (see Figure 3 for a snippet of output from this utility). To limit the size of this trace,

only the changes in the file cache content since the last snapshot were saved.

We coordinated the monitoring operations using a perl script that woke up every 90 seconds5 and spawned the

necessary processes. To limit the impact of tracing on the memory usage patterns, we filtered the larger traces before

writing them out to trace files: (1) we filtered inactive processes from the output ofps ; (2) we determined the resident

set breakdown only for active processes; (3) we saved only incremental snapshots for the contents of the file cache.

As a result, we were able to limit the footprint of the trace files to about 100 KB per hour for 128 MB machines.

pp_kernel 3957 pagesfree 841 pageslocked 4100 pagesio 0 pagestotal 39526

Figure 1: Sample output from/usr/bin/netstat -k | grep pp kernel

Address Kbytes Resident Shared Private Permissions Mapped File
00010000 760 680 656 24 read/exec emacs
000DC000 1232 1192 344 848 read/write/exec emacs
00210000 296 216 - 216 read/write/exec [ heap ]
EF350000 16 16 16 - read/exec libc_psr.so.1
EF360000 16 16 16 - read/exec libmp.so.2
EF372000 8 8 8 - read/write/exec libmp.so.2

Figure 2: Snippet ofpmemoutput.

2.3 Memory usage and availability

We divided the memory on each workstation into six categories based on its usage pattern: (1)static kernel memory

which is used for the initial kernel load; (2)dynamic kernel memorywhich is used for various kernel data structures

and modules; (3)lotsfreewhich is the list of free pages maintained by the paging daemon;6 (4) file cachewhich is used

to cache disk files; (5)process memorywhich holds the resident sets of active processes; and (6)available memory

which is the remaining memory. Of these,static kernel memoryand lotsfreeare fixed at boot time.7 We computed

4Available atftp://vic.cc.purdue.edu/pub/tools/unix/lsof.
5We found that intervals shorter than 90 seconds did not change the results significantly, while increasing both the overheads associated with

tracing and the size of the trace files.
6If the number of free pages drops to less thanlotsfree , the paging daemon steals previously allocated pages.
7For Solaris 2.5.1/2.6,lotsfree = (TotalMemory - StaticKernelMemory)/64.
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SunOS play 5.6 Generic sun4u 10/13/98

23:08:15
Size Filename

2024k /usr/local/sbin/cfengine
1936k /fs/net/solaris/bin/emacs
1464k /usr/dt/lib/libXm.so.3

616k /usr/lib/libc.so.1
560k /usr/bin/perl
464k /cachefs/cachedir/0000000000005901/.cfs_attrcache/0000000000069400
464k /usr/lib/libnsl.so.1
448k /usr/openwin/bin/Xsun
440k /usr/openwin/lib/libX11.so.4

Figure 3: Snippet of output frommemps -m.

dynamic kernel memoryusing the information provided by/usr/bin/netstat . We computed process memory

using the resident set breakdown provided bypmemandmemps. Note that, in Solaris, the virtual memory and the file

cache are unified: pages corresponding to files are classified as process memory if they aremmap’ed into the address

space of an active process; otherwise they are considered as part of the file cache.

Estimating the memory footprint of the file cache was a bit more complex. We considered the set of files that were

opened by a process (reported bylsof ) to be active at the instants where the process was active (cpu usage> 0).

Note that this set of files also includes the executable file for the process and all the library files that are mapped into

the process address space. The memory footprint of these active files was determined using the information provided

by memps -m. However, since the file cache is used to cache files that will be used in the future, the challenge was

to determine the memory footprint oflive files, i.e., files which will be accessed again in the near future. To do this,

we performed two kinds of lookahead while processing our traces. When a workstation was busy, we looked ahead to

find the point when it next became idle; all files that were accessed during this “busy” period were assumed to belive

during the whole “busy” period. When a workstation was idle, we looked ahead to the next “busy” period; all files

accessed in the “idle” period as well as the following “busy” period were assumed to belive during the “idle” period.

Note that the average length of a “busy” period was about 25 minutes. Thus, our computation of the memory used for

the file-cache at a given instant includes not only the memory used for caching files that are active at that instant but

also the memory used for caching files that will be active in the not-too-distant future.

A workstation was considered to be idle if there was no user activity (keyboard or mouse)andthe load (as reported

by w) was less than 0.3 for five minutes or more.8 We would like to caution the reader that since our traces have a

granularity of 90 seconds and since we do not directly track file open/close operations, we probably miss some bursts

of file-cache activity, especially during busy periods.

Figure 4 presents the variation (over two weeks) in memory usage and availability for workstations of different

size. These results have been averaged over all machines of the same size. We grouped machines by memory size

to avoid computing averages of quantities with very large differences. We summarize this information in Table 2

which presents the average size of each of these divisions over the two-week period. In this table,kernel memory

includes bothstatic kernel memoryanddynamic kernel memory. We make the following observations:

8This measure of workstation idleness has been used in several studies of workstation utilization.
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Host type kernel memory (KB) file-cache memory (KB) process memory (KB) available memory (KB)

32MB hosts 10310 (1133) 2402 (2257) 3746 (2686) 16310 (3844)
64MB hosts 16347 (2081) 4093 (3776) 10017 (6982) 35079 (8030)
128MB hosts 25512 (3257) 8216 (10271) 12583 (12621) 84761 (17623)
256MB hosts 50109 (8625) 7384 (7821) 17606 (23335) 187045 (47535)

Table 2: Average amount of memory used for different purposes. The numbers in parentheses are the corresponding
standard deviations.

� The total memory used by the operating system is a substantial fraction of the total memory in use. It ranges

from 10 MB on 32 MB machines to 49 MB on 256 MB machines and is relatively insensitive to time-of-day/day-

of-week effects. In general, the average memory used by the kernel is significantly more (1.6-2.8 times) than the

average memory used by user processes. Note that the number for the kernel memory includes the page daemon

free list and the memory used for initial kernel load and does not include the file-cache. The number for process

memory includes all active processes, the X server and all periodic daemons.

� The average amount of memory used by the file-cache to hold files that will be accessed in thenot-too-distant

future is small compared to the total memory on the machine. The fraction of the memory used to cachelive files

varies significantly with time and day but the mean+stddev for this fraction is within 15% of the total memory

for all memory sizes.

� On the average, a substantial fraction of the total memory of a machine is not in active use. Thisfractiongrows

as the total amount of memory on a machine grows – from about 12-14 MB for a 32 MB machine to about

180-192 MB on a 256 MB machine.

� The active process memory and file cache memory increases slowly with the physical memory on the host (see

Table 2). We find that the resident set sizes of processes and that the sizes of cached files tend to be larger on

machines with larger memories.

We would like to emphasize that these numbers areaveragesand as such they smooth over sharper variations

in memory usage that occur on individual machines. To some extent, they appear to run contrary to a widely held

perception that “my workstation pages a lot”. To understand memory availability from the point of view of users

sitting in front of individual machines, we studied the variation in memory usage for individual workstations. Figure 5

presents the variation in available memory in individual workstations with different amounts of memory. We note that

for each workstation, there are several points at which the amount of memory available is very low – these are points at

which the workstation is likely to page and the user is likely to perceive the memory of her workstation to be running

short. Table 3 quantifies this perception. It indicates the frequency with dips in memory availability occur. We note

that half the hosts in this study (26) had at least one interval in which the memory availability dropped below 6 MB;

one-fourth of the hosts had 20-30 such intervals over the period of two weeks.

The graphs in Figure 5 also show that even though such dips in memory availability occur frequently enough to be

noticed, a substantial fraction of the memory is available on individual workstations most of the time. We conclude

the perception of memory being short is based on infrequently occurring worst-case memory requirements and that a

substantial fraction of memory on a workstation is available if we look at day-long/week-long intervals.

Figure 6 presents the variation in total memory available in both the clusters. It differentiates between the memory

available on workstations that are in use and the memory available on workstations that are idle. We make two
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Figure 4: Variation in memory usage and availability. In each graph, the shaded portion of the figure at the top denotes
the average amount of memory available for machines of that size. For these graphs, we consider all machines in both
the clusters. We have not presented the corresponding graph(s) for machines with memories larger than 256 MB as
there are only three such machines and their size differs too much (320MB-1024MB) to be averaged in a meaningful
way.

7



5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

Time (days)

availmem

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

Time (days)

availmem

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

Time (days)

availmem

(a) 32 MB machine (b) 64 MB machine (c) 128 MB machine

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

Time (days)

availmem

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

Time (days)

availmem

(d) 256 MB machine (e) 1 GB machine

Figure 5: Variation in available memory for individual workstations. Note that the range of the y-axis is different for
each of the graphs. For each graph, the y-range corresponds to the total memory on the machine. These graphs show
that while there are “dips’ in memory availability, large fractions of a workstation’s memory is available most of the
time.

observations. First, forclusterB , most of the memory available is on idle workstations whereas forclusterA ,

substantial amounts of available memory is on workstations that are in use. Second, on the whole, a larger fraction of

the total memory inclusterA is available than inclusterB . These differences are to be expected as the machines

in clusterB are relatively small (average memory: 62 MB) whereas the machines inclusterA are relatively large

(average memory: 179 MB). Moreover, many of the machines inclusterA are much larger (8 out of 29 machines

have more than 220 MB) and can contribute a larger fraction of their memory.

Figure 7 presents the breakdown of the available memory contributed by machines of different size for both clus-

ters. We observe that inclusterA , about 53-60% of the available memory is contributed by the larger hosts (with�

256 MB): when idle hosts are considered, this contribution consists of roughly equal shares from 256 MB hosts and

larger hosts; when all hosts are considered, the contribution of the larger hosts dominates. This is because even when

busy, these hosts often use only a fraction of their total memory. The figures forclusterB do not show this variation

Number of intervals 0 � 1 � 6 � 11 � 21 � 31

8 MB 24 28 19 18 15 14
6 MB 26 26 16 16 14 12
4 MB 32 20 14 14 13 10

Table 3: Dips in memory availability. The box in the row labeledM MB and the column labeled� k dips, contains
the number of hosts for which the memory availability drops belowM MB for k or more intervals over the two week
period. For example, half the hosts (26) had at least one interval in which the memory availability dropped below
6 MB.
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as most hosts in this cluster are relatively small and have relatively small amounts of memory available when they are

busy.
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Figure 6: Variation of total memory available in the two clusters. The graphs marked “All Hosts” correspond to
memory available on both idle and busy hosts; the graphs marked “Idle Hosts only” correspond to memory available
on idle hosts. ForclusterA , the average available memory for all hosts is 3549 MB and the average available
memory for idle hosts is 2747 MB. The corresponding numbers forclusterB are 852 MB and 742 MB.

2.4 How long is a memory region available for?

To understand how long guest data can be expected to survive, we determined the length of time memory regions

of different size were available on each workstation. Applications that access their data-sets frequently within the

expected life-time of guest data are more likely to benefit from exploiting idle memory. For all workstations with a

given amount of memory, we computed the average length of periods for which memory regions of different size were

available. To eliminate very short periods (which a practical memory harvesting system is unlikely to exploit), we

eliminated all periods shorter than five minutes.9

Table 4 presents the average length of idle periods for memory regions. If you consider all hosts (not just the

ones that are idle), memory regions as large as half the total memory on reasonably configured workstations (those

with � 64 MB physical memory) can be expected to be available for 39 minutes or more; and memory regions that

are a quarter of the total memory on a machine can be expected to be available for 6 hours or more. If you consider

only memory that is on idle workstations, the corresponding average idle periods are 12 minutes or more for half the

workstation’s memory and 30 minutes or more for a quarter of the workstation’s memory. These results suggest that

even moderately long-running applications might be able to derive benefit from exploiting idle memory.

3 Experiments

To evaluate the expected benefits and costs of exploiting idle memory in off-the-shelf workstation clusters, we have

simulated the execution of three real data-intensive applications (out-of-core LU decomposition, decision support

queries on a sales database and data-mining for buying patterns in retail transactions) and two synthetic applications

on the traced workstation clusters. The goal of our simulations was to assess both the benefit that seen by an application

9A similar limit is used by most workstation resource harvesting systems including Condor.
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Figure 7: Breakdown of memory contribution from hosts of different sizes.

Host type 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

32MB hosts (all) 32hrs 6hrs 1hr – – – – –
32MB hosts (idle) 24min 16min 5min – – – – –
64MB hosts (all) 38hrs 25hrs 9hrs 39min – – – –
64MB hosts (idle) 58min 55min 39min 12min – – – –
128MB hosts (all) 16hrs 15hrs 14hrs 10hrs 90min – – –
128MB hosts (idle) 35min 35min 34min 30min 15min – – –
256MB hosts (all) 10days 8days 3days 50hrs 26hrs 22hrs – –
256MB hosts (idle) 48min 47min 43min 40min 31min 28min – –
All hosts (all) 29hrs 16hrs 6hrs 2hrs 2hrs 25hrs 5hrs 8hrs
All hosts (idle) 48min 44min 38min 23min 26min 58min 2hrs 90min

Table 4: Average length of idle periods for different memory regions and host groups. The increase in average length
of idle periods for large memory regions (� 128MB) in the last two rows is due to a small number of hosts with large
amounts of memory (320-1024 MB).
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from the use of idle memory for caching, as well as the cost seen by the owner of a workstation that is used in this

manner.

We first describe the infrastructure we assume for managing idle memory in a cluster. We then describe the

applications that we used for our experiments, as well as the system and workload models. Finally, we describe the

metrics used to assess the cost/benefit of exploiting idle memory.

3.1 Infrastructure for managing idle memory on off-the-shelf clusters

For these experiments, we assumed a simple portable runtime system that is suitable for managing idle memory in

an off-the-shelf workstation cluster. The design of this system, known asDodo [3], is based on that of Condor [15]

which harvests idle processors. Each application is linked to a library that implements the functionality needed by the

application in order to create, read, write, and delete remote memory regions. In contrast to global memory systems

such as GMS [11] where applications use remote memory pages implicitly,Dodorequires applications to make explicit

use of remote memory using an API similar to thestdioAPI provided by the C runtime library (the main routines being

mopen(), mread(), mwrite(), and mclose()). We chose an explicit and synchronous interface for portability and

simplicity. Dodohas been designed to run on Unix platforms; our implementation ofDodocurrently runs on Linux and

Solaris. Note that inDodo, remote memory is used for read-only caching. Writes to remote memory are propagated

to disk in parallel to being sent to the remote host.

In addition to the runtime library mentioned above,Dodo has three other components: (i) resource monitors,

(ii) idle memory daemons, and (iii) a central memory manager and scheduler. Resource monitors execute on each

participating workstation and notify the central manager when a workstation becomes idle. The central manager keeps

track of the idle workstations in the cluster as well as the amount of memory available on each workstation. An idle

memory daemon is started on a workstation when it is recruited and is terminated as soon as the workstation becomes

busy. It stores remote memory regions in its address space and supplies them on request.

To allocate remote memory, the Dodo runtime library makes a request to the central manager. The central manager

(randomly) selects a remote host from the list of hosts it knows have enough memory to satisfy the request. If the

allocation is successful, a descriptor is returned to the library which includes the identity of the remote host and a

memory-region identifier on that host. The library returns a handle to the application which it uses in all subsequent

operations on that region. The allocation fails if sufficient memory is not available. When this happens, the library

refrains from making allocation calls for a fixed time period, called therefraction period. The motivation behind this

is to reduce the cost of allocation attempts in a period when the allocation attempts are not likely to succeed. When an

attempt to access a memory region on a particular node fails (either because the node has crashed, or because it is no

longer available for hosting remote memory, or because it has previously dropped the remote memory region that was

requested), the library drops all the descriptors for memory regions stored on that node.

Memory recruitment policy: In our simulations, we assume that a workstation’s memory is recruited only if the

workstation has been idle for five minutes. We make this assumption for social acceptance reasons. Workstation

owners are usually reluctant to have their resources utilized by guests while it is in use. As shown by a recent study [28],

serving remote memory requests can potentially degrade the performance of local jobs.

In order to further limit the impact of hosting guest data on workstation owners, we restrict the maximum amount

of memory that is recruited from a workstation. The idle memory daemon usesnetstat , ps , mempsandpmemto

determine the memory in use. To this, it adds (i) the memory in the paging free list (lotsfree), and (ii) a “headroom”

of 15% of the total memory to account for the files in the file cache that are not currently open but might be opened in

near future. Recall from Section 2 that 15% of total memory is usually enough to hold the live files in the file-cache.
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The idle memory daemon recruits the remaining memory.

3.2 Applications

We used three real applications and two synthetic benchmarks in our study. For the real applications, we used traces

captured by running these applications on realistic workloads [26]. These traces were obtained using AIXtrace

utility on eight processors of an IBM SP-2. They contain information about the compute time between successive I/O

requests, the operation performed (read, write, open, seek, close), the file that is accessed, the size of the request, and

the offset of the request within the file. The datasets vary from 0.5 GB to about 5 GB.

db2: the workload fordb2 consisted of five consecutive queries against a simulated database containing records

for one year’s operation of a large department store (one million customers, 100 thousand products, 10 thousand

employees, 200 departments and 100 million transactions). These queries perform complex join, select, and aggregate

operations on indexed and non-indexed relations. The data was stored in the DB2 database from IBM. The total

database size was 5.2 GB (including the indices) and it was stored in 831 files.

dmine: this application tries to extract association rules from retail data [2, 19]. The dataset consists of 50 million

transactions, with an average transaction size of 10 items and a maximal potentially frequent set size of 3 (see [2, 19]

for details). The dataset size for this program was 4 GB and was partitioned into 8 files.

lu: this application computes the dense LU decomposition of an out-of-core matrix [13]. The dataset consisted of an

8192� 8192 double precision matrix (total size 536 MB) with a slab size of 64 columns. The data is stored in 8 files.

We chose these three applications as representatives of three classes of applications. We choselu to represent

the applications whose dataset size fits in the amount of idle memory available in the cluster. We chosedmine to

represent the class of applications whose dataset does not entirely fit into the available idle memory yet a significant

portion does. We chosedb2 to represent the applications whose dataset was much larger than the available idle

memory.

For these applications, we used a “first in” policy for deciding which data-objects are stored in remote memory.

That is, the application attempts to store data-objects in remote memory as long as there is available space. Once

a data-object is allocated space in remote memory, it will not be replaced from that memory. (However, it will be

dropped from remote memory if its host becomes busy). This results in a situation in which the objects that are

accessed during the earlier stages of an application’s execution having a greater chance of being stored in remote

memory. The motivation for using a “first in” policy comes from the fact that the applications used in our simulations

exhibit scan and triangle-scan I/O access patterns [26]. For such applications, a “first in” policy is a good caching

policy.

In addition, we used two data-intensive synthetic benchmarks to evaluate the impact of access-patterns not ex-

hibited by the real applications. For both these benchmarks, we used a 2 GB dataset. This dataset does not fit in

the average memory available inclusterB but fits within the average memory available inclusterA . For both

benchmarks, we assumed a constant compute time of 10ms between successive I/O requests. Both benchmarks make

262144 (256K) requests.

hotcold: this benchmark divides its dataset into a 20% “hot” region and a 80% “cold” region; 80% of the references

are to the “hot” region. Within each region, the requests are random. It makes 8 KB read requests.

random: this benchmark makes random 8 KB read requests from the entire dataset.
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3.3 System and Workload Model

In our simulations, we assumed that a single application was using the idle memory on the workstation cluster. We

assumed that this application was being executed on a dedicated workstation with four 250 MHz processors and

256 Mbytes of main memory. Such configurations are becoming increasingly common in desktop machines. The

simulator also models the communication between the Dodo runtime library and the processes used to harvest and

manage idle memory (idle memory daemons on individual machines and the central manager process). For the core

set of experiments, we assumed the workstations in the cluster were connected by a gigabit ethernet with an end-

to-end bandwidth of 70 MB/s, and an end-to-end latency of 7.4�s. We based these parameters on a commercial

evaluation report of a gigabit ethernet switch [25] and on a description of an efficient communication library for PC

clusters [9]. To evaluate the impact of network bandwidth on the performance of remote caching, we performed

additional experiments assuming a 100Mbps switched ethernet interconnect with 10 MB/s end-to-end bandwidth and

30�s end-to-end latency (based on [18]).

We assume that the workstation has a 133 MB/s PCI bus with one Ultra-SCSI (40 MB/s) string and two Ultra-

SCSI disks. The disk parameters used in our simulation were based on published parameters of the Seagate Cheetah 9

disk [24]. We assume an average seek time of 5.8ms, a maximum seek time of 15.7ms, a rotational speed of 10000

RPM, and an average media transfer rate of 18 MB/s. We model seek times using a truncated exponential distribution

(min 0ms, mean 5.8ms, max 15.7ms).10 We would like to point out that this I/O configuration has an aggregate disk

bandwidth of 36 MB/s and is fairly aggressive. In comparison with the network interconnect, it can provide about half

the bandwidth of the gigabit ethernet and over three times the bandwidth of 100 Mbps ethernet.

To account for the increase in processor speed (IBM SP-2 processors were 66MHz), we scaled down the compu-

tation time between I/O requests in the traces by a factor of four. To emulate the execution of an application on an

eight processor configuration on smaller configurations, the operations on a processor are simulated until it reaches a

synchronization point. At that point, the simulator switches to another processor.

Three sets of traces were used to drive our simulation: (i) workstation availability traces for each workstation in

the cluster under consideration (ii) memory availability traces for each workstation in the cluster under consideration

(iii) I/O traces for the applications. The workstation availability and memory usage traces for each workstation were

obtained as described in Section 2.

For lu , hotcold andrandom , all remote memory regions created by an application are deleted at its completion.

Thus any performance benefit they obtain from remote memory is due to accessing the same object multiple times

during a single run. This corresponds to the operation of out-of-core applications that use remote memory to hold

temporary data. Fordb2 anddmine , remote memory regions are not deleted at the end of an application’s execution.

Instead, they are retained in remote memory unless dropped as a result of the node becoming busy. This corresponds

to the operation of applications that access persistent data.

3.4 Metrics

Benefit: as the benefit metric, we used the speedup in execution time.

Cost: For a workstation owner, the primary cost of allowing her workstation’s memory to be harvested is the delay

experienced when she reclaims her workstation. This delay is a result of the workstation’s memory contents being

paged out to accommodate guest data while the workstation was idle. Measuring this delay directly is difficult – it

10We found that our results were relatively insensitive to the seek time distribution.
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poses some of the same challenges that arise in benchmarking interactive applications [10]. However, this delay will

depend on the size of the memory context that will need to be re-established when the owner reclaims her workstations.

We refer to this metric as the memory context size (MCS) and use it as a measure of the cost of exploiting idle memory.

Note that the actual delay experienced by the user usually is much smaller than time take to page in the memory context

size, since the memory context size is based on theentire memory footprint – not just the working set size – ofall

active processes (including non-interactive processes).

As discussed in Section 2, the memory traces used to drive our simulation contain information about the memory

footprint of all the active processes on a particular workstation at a given instant. Assume that the total memory

footprint of the processes that become active in first 200 seconds of a busy interval is denoted byA, the memory used

by the kernel isK, and that the amount of memory occupied by guest data at the time the workstation becomes busy

isG.

In the common case, processes that were active just before the workstation went idle will also be the processes

that become active when the workstation becomes busy (e.g. thexterm and/or thenetscape processes the user

was interacting with). Given the LRU-based page replacement policies used by modern operating systems, memory

allocation by the idle memory daemon will result in a non-zero memory context size only if the difference between

the physical memory on the workstation (sayM ) and the total memory demand (G + A +K) falls belowlotsfree

pages (the minimum amount of free memory maintained by the operating system). This give us the following estimate

for the size of the user memory context (MCS) that will need to be reestablished:

MCS =

(
0; whenA+G+K <=M � lotsfree

A+G+K �M � lotsfree; whenA+G+K > M � lotsfree
(1)

Note, however, that without monitoring the memory management system, it is impossible to determineexactly

which pages are replaced during an idle period. It is possible, however rather unlikely, that the entire memory footprint

of the processes that become active when a workstation is reclaimed is paged out. To provide a (rather loose) upper

bound on the memory context size, we compute the portion ofA that is cached in memory during the idle period.

4 Results

We ran our experiments for one week of simulated time (Sept 14-20, 1998). This allowed us to understand the effect

of time-of-day and day-of-the-week variations in workstation usage. All the results described below assume a memory

refraction period of 1 minute.

Performance Benefits:Table 5 presents the speedups achieved by each of the applications on the two clusters. For

comparison, it includes anideal speedup for each application. We computed theideal speedup using a configu-

ration with infinite remote memory that is never reclaimed and a network with infinite bandwidth and zero latency.

The speedup obtained on a cluster depends on both the amount of memory available as well as the characteristics

of the application. For compute-bound applications likelu , the speedup is limited (ideal speedup forlu is 1.27).

Both clusterA andclusterB achieve a speedup of 1.19 forlu . For this application, the additional memory

available inclusterA provides no advantage sincelu ’s footprint (536 MB) usually fits in the available memory on

both clusters.

While hotcold ’s memory footprint (2 GB) is larger than the available memory onclusterB , the speedup seen

on the two clusters is comparable. This is due to the strong locality in its references: 80% of the references are to 20%
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Application ideal clusterA clusterB

dmine 3.29 2.08 1.20
db2 2.45 1.28 1.08
lu 1.27 1.19 1.19
hotcold 1.57 1.39 1.32
random 2.01 1.72 1.24

Table 5: Speedup for different applications. This speedup is computed using the performance of the application run-
ning on the four-processor workstation with no remote memory as the baseline. The first column,ideal performance,
is an upper bound on the performance improvement that can be achieved by using remote memory.

of its memory footprint (400 MB). The speedups forhotcold are larger than those forlu as it has less computation

per byte of data read.

The other three benchmarks are more I/O bound thanlu andhotcold ; as a result, theideal speedups are

larger. However, since all three have memory footprints larger than the average available memory onclusterB ,

they achieve relatively small speedups on this cluster (ranging from 1.08 fordb2 to 1.24 forrandom ).

ForclusterA , the entire data set ofrandom and a large fraction of the data set ofdmine often fit in the available

memory; the data set ofdb2 , on the other hand, is very large and never fits in the available memory. Accordingly, the

first two achieve significant speedups (2.08 fordmine and 1.72 forrandom ) while the speedup fordb2 is modest

(1.28).
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Figure 8: Variation of speedup for each benchmark on the two clusters over one week.

Figure 8 plots the temporal variation of the speedup obtained for each benchmark on the two clusters. The plots

illustrate obvious time-of-day/day-of-week effects. The temporal variation in speedup for a benchmark depends on

its sensitivity to the amount of available memory. As pointed out earlier, both clusters usually have enough available

memory forlu . Thus, there is no variation over time in the speedup achieved bylu on both clusters. A similar trend

can be observed, albeit to a smaller extent, forhotcold andrandom on clusterA . Since a significant portion

of dmine can fit in clusterA ’s available memory, its performance shows significant temporal variations. On the

other hand,db2 has much smaller variations as a much smaller fraction of its memory footprint fits inclusterA ’s

available memory.

Impact on Workstation Owners: Table 6 presents the average number of workstation reclamations per day per host

and the average and median memory context size observed in our experiments. Our results show that in most cases a

user will not experience any delays when she reclaims her workstation. The median of the memory context size is 0
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Application clusterA clusterB
reclaims/day avg memory context reclaims/day avg memory context

per host (KB) per host (KB)
dmine 3.5 959 (0) 4.5 37.2 (0)
db2 3.5 929 (0) 4.5 38.4 (0)
lu 3.4 0.58 (0) 4.4 1.84 (0)
hotcold 3.3 0 (0) 4.3 17.2 (0)
random 3.5 104.1 (0) 4.5 30.6 (0)

Table 6: Impact of exploiting idle memory on workstation owners. The number in parentheses is the median. The
average upper bound on the memory context size is 4 MB forclusterA and 3 MB forclusterB . As mentioned
in section 3.4, this is a very loose bound.
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Figure 9: Impact of variation in network interconnect.

for all five benchmarks on both clusters. Table 6 also shows that the average number of reclamations per day per host

is 3.5 forclusterA and 4.5 forclusterB . The difference in the number of reclamations reflects the fact that some

of the machines inclusterA are used for compute-intensive jobs and sometimes idle for long periods. Note that the

memory recruitment policy used in our simulations selects hosts randomly from among the idle hosts in the cluster; if

necessary, a policy such as that proposed by Arpaci et al [4] can be used to limit the number of reclamations per day

for a particular host.

Impact of variation in network interconnect: Our next set of results examines the impact of changing the network

interconnect on the speedup obtained for individual applications. We considered the impact of increasing the network

latency from 7.4�s to 30�s, and the impact of reducing the network bandwidth from 70 MB/sec to 10 MB/sec (e.g.,

switched Fast Ethernet) on the performance of thedmine andrandom benchmarks. Note that almost all requests

from dmine are for 128 KB while all requests fromrandom are for 8 KB.

We observe that increasing the network latency to 30�s while keeping the network bandwidth fixed at 70 MB/s had

a negligible impact on the speedup obtained for bothdmine andrandom . On the other hand, reducing the network

bandwidth to 10 MB/s converts the speedup fordmine into aslowdown. Recall that our experimental configuration

assumes two disks each with a bandwidth of 18 MB/sec. Sincedmine makes large I/O requests, its performance

depends largely on the network bandwidth, and a performance improvement is possible only if the network bandwidth
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is larger than the aggregate I/O bandwidth. Note, however, thatrandom achieves significant speedup even for a

10 MB/s network. Due to the size and the random nature of its requests, the time forrandom ’s disk requests is

determined mostly by seek and rotational latencies.

Impact of variation in inter-execution delay: Our core set of experiments assumed repeated executions of the

application with no delay between consecutive executions. To examine the impact of inter-execution delay on the

performance of applications that access persistent data, we conducted additional experiments that varied the inter-

execution delay. Figure 10 plots the speedup obtained fordmine and db2 on clusterA as a function of the

inter-execution delay. Fordmine , increasing the inter-execution delay toone dayreduces the speedup by about 40%,

whereas fordb2 , it has a much smaller impact. The difference between the two benchmarks can be explained by

the fact that the performance ofdmine is much more sensitive to the amount of available memory thandb2 (see

Figure 8).

Note that an application with a large memory footprint such asdmine can expect to get some performance benefit

from using remote memory even if it is executed a day later. This indicates that there are some nodes that are idle for

long periods. Memory regions stored by these nodes do not get dropped resulting in the performance benefits observed

in our experiments.

5 Conclusions

There are four main conclusions of our study. First, on the average, a substantial fraction of the total memory of

desktop machines is not in active use. This fraction grows as the amount of memory on a machine grows – from about

12-14 MB for a 32 MB machine to about 180-192 MB on a 256 MB machine. Second, for workstations with� 64 MB

of memory, memory regions that are equal to half the workstation’s memory can be expected to be available for about

12 minute periods; the corresponding number for a quarter of the workstation’s memory is 30 minutes. Third, there

is significant benefit to harvesting idle memory on workstation clusters for data-intensive applications. Utilizing idle

memory as an intermediate cache can result in significant speedups (up to 2.1) for applications with large memory

footprints. Fourth, using a memory recruitment policy that targets only idle hosts and that does not harvest more

memory than is idle on the host ensures that users experience virtually no delays when reclaiming their workstations.

Other conclusions of our study are:

� The total memory used by the kernel is a substantial fraction of the total memory in use. It ranges from 10 MB
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on 32 MB machines to 49 MB on 256 MB machines and is relatively insensitive to time-of-day/day-of-week

effects.

� On average, a large fraction of the total memory installed on a cluster is available: 60-68% if we consider all

hosts, and about 53% if we consider only idle hosts.

� Even though large fractions of a workstation’s memory are available most of the time, there are many “dips” in

memory availability which are likely to lead to a perception of memory being short.
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