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Abstract

Almost all previous research on gang-scheduling has ig-

nored the impact of real job memory requirements on the per-

formance of the policy. This is despite the fact that on par-

allel supercomputers, because of the problems associated with

demand paging, executing jobs are typically allocated enough

memory so that their entire address space is memory-resident.

In this paper, we examine the impact of job memory require-

ments on the performance of gang-scheduling policies. We �rst

present an analysis of the memory-usage characteristics of jobs

in the production workload on the Cray T3E at the San Diego

Supercomputer Center. We also characterize the memory us-

age of some of the applications that form part of the workload

on the LLNL ASCI supercomputer. Next, we examine the is-

sue of long-term scheduling on MPPs, i.e., we study policies

for deciding which jobs among a set of competing jobs should

be allocated memory and thus should be allowed to execute on

the processors of the system. Using trace-driven simulation,

we evaluate the impact of using di�erent long-term scheduling

policies on the overall performance of Distributed Hierarchical

Control (DHC), a gang-scheduling policy that has been studied

extensively in the research literature.

1 Introduction

The topic of job scheduling strategies for paral-

lel computers has received considerable attention in re-

cent years. Many di�erent policies have been proposed

(e.g., dynamic space-sharing [17, 19] and gang sched-

uling [12, 4]) and several issues (e.g., space-sharing vs

time-sharing [10], static vs dynamic partitioning [19])

have been analyzed in the research literature.

Most of the early work on this topic ignored the con-

straints imposed by the memory requirements of jobs on

the processor scheduling policies. While several recent

studies have considered the impact of memory on job

scheduling performance [14, 11, 1, 15, 2, 13, 5], the inter-

action between memory allocation and processor sched-

uling is still not well understood in practice, primarily

due to the limited data on real job memory requirements.

One of the job scheduling policies that has been

studied extensively is gang scheduling[12, 4]. Many

commercial parallel supercomputers, including the Cray

T3E, the Intel Paragon, the IBM SP2 and the Meiko CS-

2, provide some support for gang scheduling. In this pa-

per, we consider the impact of the memory requirements

of real parallel jobs on gang-scheduling performance.

Under gang-scheduling, parallel jobs time-share the

processors of the system in a coordinated manner; typi-

cally, several jobs are memory resident at the same time.

Hence, there is competition among jobs not only for

processors but also for memory. When a job is sub-

mitted to the system, the scheduler has to make two

decisions: �rst, whether to allocate memory to the job,

and second, which processors to allocate to the job. On

a distributed memory parallel computer, these two deci-

sions cannot be made independently because the amount

of memory available to a job depends upon the number

of processors allocated to it. As in classical operating

systems, the process of making memory allocations de-

cisions is referred to as long-term scheduling.

When the memory available on a computer is large

relative to the memory demands of incoming jobs, the

memory requirements of jobs have little or no impact

on processor allocation decisions. Further, there is no

competition among jobs for memory, so jobs are hardly

ever swapped out of memory. In other words, long-

term scheduling has a minimal impact on the system and

can be ignored in the performance evaluation of the job

scheduling policy in these environments. On the other

hand, when the memory requirements of jobs are large

relative to the amount of available memory, long term

scheduling can have a signi�cant impact on the overall

performance of the job scheduling policy.

Almost all previous work on gang-scheduling has

ignored the impact of long-term scheduling on the per-

formance of the policy. This is despite the fact that on

parallel supercomputers, because of the problems asso-

ciated with demand paging, executing jobs are typically

allocated enough memory so that their entire address

space is memory-resident [1, 14, 15, 5]. Given the large

data sets associated with several of the scienti�c applica-

tions that constitute the bulk of the workload on parallel

supercomputers, the impact of the memory requirements

of real jobs on the performance of job scheduling is likely

to be signi�cant. In this paper, we present results that

support this conclusion.

We make two contributions. First, we report on the

memory-usage characteristics of jobs in the workload on

the Cray T3E at SDSC. Our analysis is based on job

logs from May 1998, and as such, represents information



about workloads on a current generation supercomputer.

We also present an analysis of memory requirements of

jobs that form part of the workload for the ASCI su-

percomputer at the Lawrence Livermore National Lab-

oratory. Our analysis of memory-usage characteristics

indicates that many jobs in a typical MPP workload are

likely to have memory requirements that are large rela-

tive to the amount of available memory.

Second, using trace-driven simulation, we evaluate

the impact of using di�erent long-term scheduling polices

on the performance of Distributed Hierarchical Control

(DHC), a gang-scheduling policy that has been studied

extensively in the literature [4, 3]. Our results show that

the constraints imposed by the memory requirements

of jobs have a signi�cant impact on DHC performance.

Further, we show that the interaction between long-term

scheduling and processor scheduling is complex, and def-

initely requires further research.

The structure of the rest of this paper is as follows.

In Section 2, we discuss in more detail the various levels

at which scheduling decisions are made in parallel su-

percomputers. In Section 3, we present an analysis of

the memory-usage characteristics of jobs in the produc-

tion workloads. Section 4 contains our simulation study

of the performance of DHC taking long-term scheduling

into account. Finally, Section 5 presents our conclusions.

2 Scheduling Framework

A large number of scheduling strategies and vari-

ations have been proposed and examined for di�erent

parallel computing environments. In this section we

present and consider a uni�ed scheduling framework and

model to better understand the fundamental aspects of

di�erent parallel scheduling policies and to systemati-

cally compare and examine the various scheduling deci-

sions made at di�erent levels. This uni�ed scheduling

framework is illustrated in Figure 1.

On parallel computers, scheduling can be thought

of as taking place at three levels:

� Long-term Scheduling { at this level, the scheduler

decides which jobs are allocated memory and thus

allowed into the \system". This decision is based

on several criteria { one is obviously the memory

required by the job and the amount of memory

available. Other possible criteria include the class

of the job (interactive, batch, etc.) and the num-

ber of processors requested. Jobs may be allowed

to reside in memory until they complete, or a pre-

emptive policy may be used under which jobs can

be swapped out of memory by higher priority jobs,

possibly after checkpointing. Memory can be time-

shared in the sense that after a time quantum TL

(or after its priority has decayed to a certain level),

jobs executing in the system will be swapped out

of memory and return to the long-term queue. The

time quantum TL must be selected keeping in mind

the relatively large overheads for swapping jobs in

and out of memory, as well as for checkpointing if

used.

� Medium-term scheduling { This level is responsi-

ble for constructing the scheduling \matrix", i.e.,

mapping jobs to processors. Under most gang-

scheduling policies discussed in the literature, once

a job is mapped on to a set of processors, it ex-

ecutes on those processors until it �nishes or it is

swapped out of memory. However, under some poli-

cies, jobs can be migrated and/or recon�gured from

one set of processors to another during their execu-

tion. In other words, the scheduling matrix can

be \repacked", where repacking involves migrating

jobs from one set of processors to another and/or

recon�guring executing jobs. The interval between

repackings can be thought of as the time quan-

tum, TM , before a jobs returns to the medium-term

queue. This time quantum TM is decided based on

the overheads incurred by a job while it is being re-

con�gured or migrated for repacking. The interval

between changes to the scheduling matrix can also

be dynamic with TM as a minimum.

� Short-term scheduling { at this level, node level

schedulers decide which process is going to run

next. Mechanisms for coordinated context switch-

ing are used to ensure that jobs are gang-scheduled.

The length of the short-term time-sharing quantum

TS should be long enough to amortize the over-

heads of context switching on a parallel system,

e.g., switch recon�guration time.

Within this scheduling framework, let us look at a few

of the policies that have been studied in the literature.

Gang-scheduling policies such as DHC[3] have a

long-term queue consisting of jobs that cannot be sched-

uled because they require more memory than is avail-

able. However, once jobs are scheduled they never re-

turn to the long-term queue. Thus, there is no long-

term time-sharing. Medium-term scheduling takes place

exactly once for each job when it is mapped to a set

of processors. There is no medium-term time-sharing

because the scheduling matrix is never repacked. Thus

DHC can be thought of as a policy in which time-sharing

only occurs at the level of the short-term scheduler.

If the scheduling matrix is periodically repacked,

as under the policy studied by Chandra et al [2], or dy-

namically recon�gured and adjusted, as under the pol-

icy studied and implemented in the Octopus project at

IBM Research [6], then the jobs can be thought of as

returning to the medium-term queue when the matrix

is repacked and/or recon�gured. The Lawrence Liver-

more gang-scheduling implementation on the Cray T3D

[8] and the FB-IQA policy studied by Setia [16] do not

have short-term time-sharing since there is only one job

allocated to a processor at any given time. However,
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Figure 1: A Uni�ed Scheduling Framework.

jobs are periodically swapped in and out of memory {

thus, there is long-term time-sharing under both poli-

cies. Under the FB-IQA policy, jobs can be migrated

from one set of processors to another. Thus, FB-IQA has

both medium-term and long-term time-sharing. Finally,

the gang-scheduling strategy in Octopus provides short-

term, medium-term and long-term scheduling, although

long-term time-sharing has not been fully exploited [6].

In this paper, we focus on the performance of DHC

while taking long-term scheduling into account. We

study both preemptive and non-preemptive long-term

scheduling policies. Under the non-preemptive policies,

there is no long-term time-sharing, i.e, TL =1. In other

words, once a job has been allocated memory, it is never

swapped out. Under the preemptive policy, jobs return

to the long-term queue after they have executed for more

than TL time units. Under all of these policies, the long-

term and medium-term scheduler act in concert; a job is

only allocated memory if it can be allocated processors

and vice versa.1

3 Memory Usage Characteristics

One of the reasons why long-term scheduling has

received relatively little attention in the context of gang-

scheduling is that there has been very little information

available about the memory-usage characteristics of real

1Note that if the degree of multiprogramming (the number of slots

in the scheduling matrix) has an upper bound for performance reasons,

then a job cannot be allocated processors if all the slots are \full".

parallel jobs. The only previous study that has reported

memory-usage characteristics is Feitelson's study [5] of

the workload on the CM5 at Los Alamos National Lab-

oratory.

We now examine the memory-usage characteristics

of jobs submitted to the Cray T3E at SDSC in May,

1998. Table 1 summarizes the statistics for this work-

load. Jobs submitted to the system can be classi�ed

into two categories: batch jobs, which are submitted via

NQS, and interactive \jobs", which actually correspond

to a session consisting of a series of commands. There

are 1467 batch jobs and 1053 interactive sessions in the

workload. The statistics for the interactive session are

totals for all commands during the session; hence, we

do not report on statistics such as service time that are

only meaningful for individual jobs. The memory usage

and parallelism reported are the maximum memory us-

age and parallelism for the commands in the interactive

session. The Total CPU Time statistic reported in the

table corresponds to the actual cpu time consumed by

the batch job or interactive session.

Our analysis shows that the characteristics of this

workload are similar to those of other MPP workloads

that have been reported in the literature. Speci�cally,

there is a large variance in interarrival times, service

times, and total cpu time. The distribution of paral-

lelism of the jobs resembles the distributions observed

in other workloads with the exception that there are no

sequential jobs in the workload. Another di�erence from



Coe�.

Mean of variation Minimum Maximum

All Interarrival time (seconds) 1141 1.78 0 32905

jobs Total CPU Time 227191 3.2 0.19 9208799

Parallelism 28 1.3 2 260

Memory Usage Per Node (MB) 28.5 1.22 0.7 116

Interactive Total CPU Time 44272 7.7 0.19 5526746

sessions Parallelism 22 1.4 2 260

Memory Usage Per Node (MB) 20 1.71 0.7 116

Batch Service Time (seconds) 51059 1.5 2 782305

jobs Total CPU Time 358489 2.47 0.34 9208799

Parallelism 32 1.23 2 128

Memory Usage Per Node (MB) 34.6 0.99 2.9 34.5

Table 1: Statistics for the workload on the SDSC Cray T3E

other workloads is that the batch jobs in the workload

have much larger service times; the average service time

is over 14 hours, and the largest service time is more

than 9 days.

The workload characteristic of greatest interest to

us is the per-processor memory usage of each job. Here

we �nd that the memory-usage patterns of jobs in the

workload resemble the memory-usage patterns exhibited

by jobs in the LANL CM5 workload. The average mem-

ory used per processor by jobs in the SDSC Cray T3E

workload is much higher than in the LANL CM5 work-

load. This is to be expected since each node on the

Cray T3E has 128 MB of memory, while the CM5 has

32 MB of memory per node. However, there are strong

similarities between the two workloads:

� The distribution of memory requests is wide. In

Figure 2, we plot the frequency of the per-processor

memory usage for the workload. We observe that

more than half of the jobs in the workload have

per-processor memory usage less than 10 MB. How-

ever, there are a signi�cant number of jobs that

have large memory requirements.

� Long running jobs tend to use more processors and

more memory than other jobs. To illustrate this,

we divided batch job into �ve categories based on

their execution time. Figure 3 (a) and (b) plot the

average memory usage per processor and the aver-

age parallelism as a function of the job category.

These �gures show that there is a positive corre-

lation between execution time and job parallelism,

and also between execution time and per-processor

memory usage.

These characteristics have two important implica-

tions for gang-scheduling policies. First, since most jobs

have small memory requirements, relatively �ne-grain

(or short-term) time-slicing among several memory-

resident jobs is distinctly possible. Second, since many

long-running jobs have large memory requirements, rel-

atively coarse-grain (or long-term) time-sharing is prob-

ably necessary for providing good service to these jobs

while not penalizing smaller jobs.
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Figure 2: Distribution of per-processor memory usage

for jobs in the workload.

3.1 Characterization of Application Memory

Requirements

We now report on the memory-usage characteris-

tics of some of the applications that are expected to



Figure 3: Correlation between job execution time and (a) memory usage per node , and (b) Job Parallelism.

Application Data Set Size

Camille 15.6 MB

Ale3D 18 GB

Paradyn 70 MB

F3D 19 GB

ICF3D 8 GB

Pagosa 24 GB

Tecolote 28 GB

Flag 80 GB

Parow 800 MB

Table 2: Total Problem Memory Size for applications

that form part of the workload for the ASCI supercom-

puter at LLNL.

form the workload on the ASCI supercomputer at the

Lawrence Livermore National Laboratory. Table 2 re-

ports the data set size for nine important scienti�c ap-

plications. We observe that the total data set sizes for

these applications are large and in most cases are of the

order of several Gigabytes. The main point illustrated by

this table is that although the per node memory sizes on

the ASCI supercomputers are of the order of 2 GB, the

memory demands of the applications that are expected

to run on these supercomputers have correspondingly

large data set sizes. Further, given the low swapping

speeds observed on these systems [7], the importance of

long-term scheduling is likely to increase rather than di-

minish in such systems, and long-term scheduling can

also e�ectively exploit block-paging methods [18] to re-

duce the costs of swapping (as well as paging).

4 Performance Evaluation of Long-term

Scheduling Policies

In this section, we evaluate the impact of job mem-

ory requirements on the performance of the DHC gang-

scheduling policy. Using trace-driven simulation, we

evaluate the performance of DHC when it is combined

with various long-term scheduling scheduling policies.

4.1 Simulation Model and Methodology

Workload Model Our simulation was driven by a

trace that was derived from the workload described in

Section 3. This trace consists of all the jobs in the work-

load with the exception of some batch jobs that had very

small CPU times in relation to their execution times, e.g.

execution time of several hours but total CPU time of

a few minutes. Since we were not sure of the reason for

this behavior,2 we decided to eliminate them from our

workload. We also decided to treat the interactive ses-

sions in the workload as interactive jobs. This preserves

many of the characteristics of the workload such as the

job arrival and memory-usage patterns, and is preferable

to creating a separate synthetic trace for the interactive

jobs.

2One possible reason is that these jobs were excessively I/O bound.



SystemModel To evaluate policy performance at dif-

ferent utilizations without changing any of the character-

istics of the workload, we varied the number of proces-

sors in the system (denoted by P ) from 768 to 1152

in increments of 128 processors. The o�ered loads cor-

responding to these values of P are shown in Table 3.

Note that this is the o�ered load corresponding to the

jobs in the trace, not the actual load on the system. As

we will see later in this section, some jobs may not get

scheduled during a simulation run because their memory

requirements cannot be satis�ed. This has the e�ect of

reducing the actual utilization of the system.

P O�ered Load

1152 0.65

1024 0.73

896 0.84

768 0.98

Table 3: O�ered load corresponding to di�erent system

sizes for the workload trace.

We considered two memory con�gurations for the

system with per processor memory (M) of 128 and 256

MB. Note that the SDSC Cray T3E has 128 MB on

each node. We assumed that jobs could be swapped in

and out of memory at a rate of 20 MB/sec, and that

each processor transfers its portion of the job to disk in

parallel. We believe that this rate should be achievable

given current network and disk technology.

Metrics The primary metrics used to evaluate the per-

formance of a policy are the average response time (de-

noted by R) and the average normalized response time

(denoted by U), where the normalized response time is

de�ned as the ratio of a job's response time to its ser-

vice time. For our workload, the average normalized

response time is dominated by the normalized response

time of interactive jobs, whereas the average response

time is dominated by the response times of long running

batch jobs.

4.2 Performance Results

As discussed in Section 2, on a distributed mem-

ory MPP, memory allocation and processor allocation

decisions need to be made in concert. Under DHC, the

long-term queue contains all jobs that are waiting to be

allocated processors and memory. We assume that the

long-term queue is partitioned into two queues { one for

interactive jobs and one for batch jobs. Interactive jobs

have higher priority than batch jobs.

Under the base policy, if a newly arrived job cannot

be allocated processors because the available memory is

less than the memory required by the job, it is added to

the end of the interactive or batch long-term queues de-

pending upon its class. Otherwise, it is mapped on to a

set of processors using the DHC algorithm. (The reader

is referred to [3] for details of this mapping scheme.)

Once a job is mapped on to a set of processors, it exe-

cutes on those processors until it completes. Whenever

a job departs the system, the long-term scheduler exam-

ines �rst the interactive job queue and then the batch

job queue to see if any of the queued jobs can be al-

located memory. Within their class, jobs are examined

in order of arrival; thus our base long-term scheduling

policy is a FCFS policy.

Figure 4 plots R and U for the base policy as a

function of P when M = 128 and 256. Surprisingly,

DHC has better performance for M = 128 than it does

for M = 256. At high loads (P = 896 and 768), U

is higher for the small memory con�guration because

interactive jobs experience larger delays than they do

for M = 256. However, at moderate loads (P = 1024

and 1152), U is lower for M = 128. Further, R is lower

at all loads for M = 128 than it is for M = 256.

This result shows that the amount of memory avail-

able on the system can have an unexpected impact on

the performance of a gang-scheduling policy. Not only

is this performance trend unexpected but it is also un-

desirable, since we would naturally want to see an im-

provement in performance upon adding more memory to

the system.

In order to better understand the reasons for this

unexpected behavior, we identi�ed two aspects of the

long-term scheduling policy that were a�ected by the

amount of memory available on the system. First, de-

creasing the amount of memory available on the sys-

tem tends to decrease the priority of the jobs with large

memory requirements in the long-term queue. This is

especially the case at high loads, when there is a large

demand for memory. In such situations, jobs with large

memory requirements cannot be scheduled since the

amount of available memory is smaller than is required

by the job. Second, decreasing the amount of available

memory tends to reduce the degree of multiprogramming

on the system.

To quantify the performance impact of these as-

pects of the long-term scheduling policy, we made two

modi�cations to our base long-term scheduling policy.

First, we changed the FCFS ordering of the long term

queue to a Smallest Memory First (SMF) ordering. This

has the e�ect of making the priority of a job in the long-

term queue independent of the amount of memory in-

stalled. Second, we introduced a policy input parameter

(D) that controlled the degree of multiprogramming on

the system. In the context of DHC, this parameter con-

trols the maximum number of slots in the scheduling

matrix.

E�ect of Job Ordering Policy Figure 5 plots R and

U for the FCFS and SMF policies with M = 128 and

256 as a function of P . We observe that SMF long-term

scheduling results in lower R for bothM = 128 and 256.
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Figure 4: Average normalized response time (U) and average response time (R) for the base policy.

This result can be explained by the positive correlation

between memory requirements and job execution times.

Smallest Memory First tends to give a higher priority

to shorter jobs, which results in improved response time

performance.

However, the response time forM = 128 is still sig-

ni�cantly smaller than it is for M = 256. At high loads,

SMF also results in better performance than FCFS for

interactive jobs whenM = 128. This implies that the or-

der in which jobs are selected from the long-term sched-

uling queue is not the direct reason for the di�erence

in performance of the base policy for M = 128 and

M = 256.

E�ect of Restricting the Degree of Multipro-

gramming We varied D from 1 to 7 in increments of

2 for both M = 128 and M = 256. Figure 6 plots R and

U for each con�guration. When M = 128, increasing D

beyond 3 has no e�ect on performance, hence we only

plot the curves for D = 3. Similarly, restricting D to 1

implies thatM has no impact on performance; hence we

plot a single curve for D = 1.

We observe that, for our workload, D = 1 results

in the lowest response time. At the same time, D = 1

has the largest normalized response time since there is

no time-sharing. Clearly, a policy that results in poor

performance for interactive jobs is not acceptable. Nev-

ertheless, the fact that batch jobs have the best perfor-

mance when D is 1 sheds light on the reason why the

overall response time under the base policy is lower for

M = 128 than it is for M = 256.

We also observe that the response time for M =

256 is much worse than the performance for M = 128,

even when D = 3 in both cases. Further, when M =

256, setting D to 3 results in very poor performance for

interactive jobs.

These results are helpful in understanding the im-

pact of memory on the performance of DHC. When the

available memory is large relative to the memory re-

quirements of jobs, e.g., when M = 256, and the de-

gree of multiprogramming is small (D � 3), interactive

jobs have poor performance. This is because the jobs

in memory occupying the slots in the scheduling matrix

tend to be batch jobs, and interactive jobs experience

large delays before they can be scheduled. On the other

hand, when the available memory is small relative to

the memory requirements of jobs, e.g., when M = 128,

and the degree of multiprogramming is larger than 1

(D = 3), interactive jobs have good performance. This

is because the small amount of available memory itself

tends to reduce the number of batch jobs that can be al-

located memory and interactive jobs do not experience

any delays before they can be scheduled.

This suggests that it is not enough to restrict the

degree of multiprogramming to get good performance for

the workload under consideration { instead, it is neces-

sary to restrict the number of batch jobs that are allo-

cated memory on a processor. To con�rm this reasoning,

we introduced another input parameter to the long-term

scheduling policy that controlled the maximum number

of batch jobs that can be allocated memory on a proces-

sor. We call this input parameter the batch job limit,

denoted by B.

In Figure 7, we plot R and U for M = 128 and

M = 256 with B = 1. For comparison, we also plot

the curve for M = 128 when there is no batch job limit.

We observe that setting B = 1 results in DHC having

practically the same response time for M = 128 and

M = 256. Further, interactive jobs have much better

performance when B = 1 than when there is no upper

limit on the number of batch jobs. At the same time, the

performance of batch jobs does not appear to be unduly

a�ected by setting B to 1.

Overall, we can conclude that, for the workload

under consideration, the best non-preemptive long-term

scheduling policy is one that restricts the degree of mul-

tiprogramming of batch jobs to be no larger than one

and schedules jobs in the long-term queue in a Smallest

Memory First order. Unlike our base policy, this pol-

icy has the desirable property that its performance is
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(SMF) and the base long-term scheduling policies.
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Figure 6: Average normalized response time (U) and average response time (R) for di�erent values of the degree

of multiprogramming (D).

largely independent of the amount of memory installed

per processor.

Impact of Long-term Time-Sharing The long-

term scheduling policies evaluated so far are all non-

preemptive in nature, i.e., once a job has been allocated

memory it holds on to the memory until it completes.

Our results indicate that the number of batch jobs allo-

cated memory on a processor should be restricted to at

most one. This implies that there is no �ne-grain time-

sharing with respect to batch jobs under the policy that

was shown to have the best performance for our work-

load. The statistics in Table 1, however, indicate that

there is a great deal of variation in the service times of

batch jobs. Thus, time-sharing should lead to improved

performance for these jobs [9].

The issue, therefore, is how to time-share the

processors (and memory) among batch jobs without

letting the degree of multiprogramming of batch jobs

exceed one. One solution, clearly, is that the long-

term scheduling policy should be preemptive in nature

and should support long-term time-sharing among batch

jobs.

To assess the performance bene�ts of long-term

time-sharing, we extended the long-term scheduling pol-

icy described above so that batch jobs returned to the

long-term queue after a time quantum (TL) as in Figure

1. Each job has a priority that is inversely proportional

to the CPU service it has accumulated so far. Periodi-

cally, the scheduler recalculates the priorities of all the

batch jobs in the system (e.g., by dividing them by 2) so

that jobs are not penalized forever for past CPU usage.

Figure 8 shows the impact of long-term time-

sharing for our workload. Since most of the batch jobs

in our workload run for several hours we selected a long-

term quantum of 3 hrs. The TL =1 policy corresponds

to the non-preemptive policy that was shown to have

the best performance, i.e, the policy with batch limit, B

= 1. Our results show that long-term time-sharing sub-

stantially improves the normalized response time for the

workload. Most of this reduction in U as compared to

the policy with no long-term time-sharing is due to an

improvement in the performance of the batch jobs. (In-

teractive jobs are more or less una�ected by long-term
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Figure 8: Average normalized response time (U) and average response time (R) for long-term scheduling policies

with and without time-sharing.

time-sharing of batch jobs). The response time under

long-term time-sharing is higher than the response time

when there is no time-sharing. This result is somewhat

misleading and is an artifact of our simulation method-

ology as explained below.

Overall, our results indicate that long-term time-

sharing is bene�cial for the workload under considera-

tion.

Discussion Each run of our simulation terminates af-

ter the last interactive job in the trace completes. At

the time the simulation terminates, there can be several

batch jobs that have either not received any service at

all (in the case of the non-preemptive long term sched-

uling policy) or have received partial service. At high

loads, under the non-preemptive policies, several batch

jobs that require a large number of processors and a

large amount of memory do not get scheduled during

the simulation run. On the other hand, these jobs do

receive service when long-term time-sharing is used. We

found that the actual o�ered load on the system under

the long-term time-sharing policy was higher than the

load under the non-preemptive policy. This is the main

reason for the higher response time under the long-term

time-sharing policy.

Note that the same reasoning applies to all the re-

sults in this paper, especially the results corresponding

to P = 768. As shown in Table 3, when P = 768 the

o�ered load is 0.98. However, none of our response time

curves shows the expected increase in response time as

the o�ered load approaches 1 because the actual load

on the system is smaller than the o�ered load. In our

future work, we plan to quantify this e�ect or to modify

our simulation methodology to allow a fairer comparison

of policies.

5 Conclusions

Most previous research on gang-scheduling has ig-

nored the impact of long-term scheduling on the per-

formance of the policy. In large part, this is because

there has been very little information available about

the memory-usage characteristics of real parallel jobs. In

this paper, we reported the memory-usage characteris-

tics of jobs in the production workload on the Cray T3E

at the San Diego Supercomputer Center. We also char-

acterized the memory usage of some of the applications



that form part of the workload on the LLNL ASCI super-

computer. Our analysis shows that since most jobs have

small memory requirements, relatively �ne-grain (or

short-term) time-slicing among several memory-resident

jobs is distinctly possible. Second, since many long-

running jobs have large memory requirements, relatively

coarse-grain (or long-term) time-sharing is probably nec-

essary for providing good service to these jobs while not

penalizing smaller jobs.

This conclusion is con�rmed by our simulation

study that evaluated the impact of using di�erent long-

term scheduling policies on the overall performance

of Distributed Hierarchical Control (DHC), a gang-

scheduling policy. Our simulation results indicate that

for the workload considered in this paper the best long-

term scheduling policy restricts the degree of multi-

programming of batch jobs to one and uses coarse-

grain time-sharing to provide good service to batch jobs.

While our results are based on a single workload, at the

very least, they show that the interaction between long-

term scheduling and processor scheduling is complex and

de�nitely requires further research.
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