
Dodo: A User-level System for Exploiting Idle Memory in

Workstation Clusters

Samir Koussih

Dept. of Computer Science

George Mason University

Fairfax, VA 22030

Anurag Acharya

Dept. of Computer Science

University of California

Santa Barbara, CA 93106

Sanjeev Setia

Dept. of Computer Science

George Mason University

Fairfax, VA 22030

Abstract

In this paper, we present the design and implementation of Dodo, an e�cient user-level system for
harvesting idle memory in o�-the-shelf clusters of workstations. Dodo enables data-intensive applications
to use remote memory in a cluster as an intermediate cache between local memory and disk. It requires
no modi�cations to the operating system and/or processor �rmware and is hence portable to multiple
platforms. Further, the memory recruitment policy used by Dodo is designed to minimize any delays
experienced by the owner of desktop machines whose memory is harvested by Dodo.

Our implementation of Dodo is operational and currently runs on Linux 2.0.35. For communication,
Dodo can use either UDP/IP or U-Net, the low-latency user-level network architecture developed by
von Eicken et al [4]. We evaluated the performance improvements that can be achieved by using Dodo

for two real applications and three synthetic benchmarks. Our results show that speedups obtained for
an application are highly dependent on its I/O access pattern and data set sizes. Signi�cant speedups
(between 2 and 3) were obtained for applications whose working sets are larger than the local memory
on a workstation but smaller than aggregate memory available on the cluster and for applications that
can bene�t from the zero-seek nature of remote memory.

1 Introduction

In recent years, there has been an explosion in the number of data-intensive applications. Applications with
dataset sizes ranging from several hundred megabytes to several gigabytes can be found in many di�erent
domains, e.g., scienti�c computing, data mining, and multi-media systems. Since their memory footprint
is often much larger than the physical memory on most machines, these applications spend a signi�cant
fraction of their time waiting for disk I/O.

Given the dramatic fall in the price of DRAM chips in recent years, an obvious way of improving the
performance of such applications is to install more memory on the machines used to run them. However,
installing large amounts of memory on a single machine is still expensive for two reasons. First, memory is
cheap only in commodity sizes (32/64/128 MB); there is a large premium for larger sizes. For example, a
512 MB PC100 SDRAM DIMM costs $3900 [12] whereas four 128 MB PC100 SDRAM DIMMs cost $600 [15].
Second, commodity-priced machines have a limit on the amount of memory; server-class machines that can
have larger memories come at a substantial premium.

The availability of commodity-priced high speed LANs introduces another alternative: a cluster of
commodity-priced workstations. Even though the memory on each such machine is only 64-256 MB, the
aggregate memory in the cluster is often several gigabytes. Furthermore, a large fraction of this memory
is often idle [2]. Using this memory as an intermediate cache between local memory and disk o�ers the
potential of improving the performance of data-intensive applications, without the expense associated with

1

large-memory machines. This is especially attractive for programs with transient peaks in their memory
requirements or for data-intensive programs that are run infrequently.

Several research projects have proposed using memory of idle workstations for hosting guest data [5,
6, 7, 8, 10, 14, 16, 21]. Iftode et al [10] propose extending the memory hierarchy of multicomputers by
introducing a remote memory server layer; Felten and Zahorjan [8] examined the idea of using remote client
memory instead of disk for virtual memory paging; Schilit and Duchamp [17] investigated the use of remote
memory paging for diskless portable machines; Dahlin et al [6] and Sarkar et al [16] propose schemes to
use idle memory to increase the e�ective �le cache size; Feeley et al [7] describe a low-level global memory
management system that uses idle memory to back up both �le pages and virtual memory page.

These e�orts have focused on developing e�cient kernel-level mechanisms for harvesting idle memory.
In this paper, we present a user-level mechanism, called Dodo,1 that requires no modi�cations to operating
system kernel or processor �rmware. The history of resource-harvesting systems such as Condor has shown
that portability (with respect to both processor architecture and the operating system) is an important
requirement for their success and longevity. User-level systems like Condor [11] have
ourished for over a
decade through several generations of processors and operating systems. Accordingly, portability was an
important goal for the design and implementation of Dodo. While the performance improvements obtained
via Dodo are potentially smaller than those obtained by customizing the operating system kernel, they are
available to much larger community.

The design of Dodo is based on that of Condor [11], one of the most successful systems for harvesting idle
resources. In contrast to global memory systems such as GMS [7] where applications use remote memory
pages implicitly, Dodo requires applications to make explicit use of remote memory. Each application is
linked to a library that implements the functionality needed by the application in order to create, read,
write, and delete remote memory regions.

An explicit interface has the disadvantage that it requires the programmer to keep track of memory usage
and to coordinate all data transfer to and from the remote memory cache. To lighten this burden, we have
developed a coarse-grain memory-management library that can be layered on top of Dodo. This library
is linked in with the application and tracks coarse-grain memory access-patterns and implements multiple
memory-replacement policies. Note that in Dodo, remote memory is used for read-only caching. Writes to
remote memory are propagated to disk in parallel to being sent to the remote host.

We have implemented Dodo on a Beowulf class Linux cluster. We evaluated the performance improve-
ments that can be achieved by using Dodo for two real applications and three synthetic benchmarks. Our
results show that speedups obtained for an application are highly dependent on its I/O access pattern and
data set sizes. Signi�cant speedups (between 2 and 3) were obtained for two kinds of applications: (i)
applications whose working sets are larger than the local memory on a workstation but smaller than aggre-
gate memory available on the cluster (ii) applications that can bene�t from the zero-seek nature of remote
memory.

We �rst present a brief summary of the study of idle memory in workstation clusters that motivated our
work. We then present the design and implementation of the di�erent components of Dodo. Finally, we
present performance results for a suite of real and synthetic data-intensive applications.

2 Availability of Idle Memory in Workstation Clusters

The design and implementation of Dodo was motivated by the results of our study [2] that monitored
memory availability on two production clusters for several weeks. For this study, we captured detailed traces
of memory and processor usage on a 29 workstation Solaris cluster at the University of California at Santa
Barbara (referred to as clusterA) and a 23 workstation Solaris cluster at George Mason University (referred
to as clusterB) . These workstations are used by faculty and graduate students for personal purposes as
well as for running large compute-intensive jobs.

For each workstation in these clusters, we used a suite of tools (including top, lsof, and the memtool

kernel package for Solaris) to monitor several kinds of information that allowed us to determine how memory

1Following Condor, many resource harvesting systems are named after birds (e.g., Finch [1]). These systems harvest processor
cycles and other resources; Dodo is just for memory (and being an extinct bird, Dodo is \just a memory" :))

2

was being used: (i) by the operating system kernel (ii) for caching �le pages (iii) for process virtual memory,
and (iv) for the free list. We further processed these traces to come up with an estimate of the \idle"
memory on each workstation, i.e., the amount of memory that can be recruited for hosting guest data while
minimizing any delays experienced by the workstation owner.

We summarize below the main results of our study, while referring the reader to [2] for more details on
our methodology and results:

� On average, a large fraction of the total memory installed on a cluster is available: 60-68% if we
consider all hosts, and about 53% if we consider only idle hosts. (see Figure 1). We consider a host to
be idle if there has been no keyboard or mouse activity for the last �ve minutes and the average cpu
load over the same period is less than 0.3.

� On the average, a substantial fraction of the total memory of desktop machines is not in active use.
This fraction grows as the amount of memory on a machine grows { from about 12-14 MB for a 32 MB
machine to about 180-192 MB on a 256 MB machine (see Table 1 for details).

While the �rst result above indicates that there is a signi�cant amount of idle memory available on a
cluster, the second result suggests a strategy for exploiting this idle memory without causing any noticeable
delays to the owner of the workstation. We discuss this point in more detail in Section 3.

Aggregate Available Memory
(clusterA)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (days)

Me
mo

ry
(M

B)

Idle Hosts Only All Hosts Total Memory

Aggregate Available Memory
(clusterB)

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (days)

Me
mo

ry
(M

B)
Idle Hosts Only All Hosts Total Memory

Figure 1: Variation of total memory available in the two clusters. The graphs marked \All Hosts" correspond
to memory available on both idle and busy hosts; the graphs marked \Idle Hosts only" correspond to memory
available on idle hosts. For clusterA, the average available memory for all hosts is 3549 MB and the average
available memory for idle hosts is 2747 MB. The corresponding numbers for clusterB are 852 MB and
742 MB.

Host type kernel memory (KB) �le-cache memory (KB) process memory (KB) available memory (KB)

32MB hosts 10310 (1133) 2402 (2257) 3746 (2686) 16310 (3844)
64MB hosts 16347 (2081) 4093 (3776) 10017 (6982) 35079 (8030)
128MB hosts 25512 (3257) 8216 (10271) 12583 (12621) 84761 (17623)
256MB hosts 50109 (8625) 7384 (7821) 17606 (23335) 187045 (47535)

Table 1: Average amount of memory used for di�erent purposes. The numbers in parentheses are the
corresponding standard deviations.

We would like to emphasize that these numbers are averages and as such they smooth over sharper
variations in memory usage that occur on individual machines. To some extent, they appear to run contrary
to a widely held perception that \my workstation pages a lot". To understand memory availability from
the point of view of users sitting in front of individual machines, we studied the variation in memory usage

3

for individual workstations. Figure 2 presents the variation in available memory in individual workstations
with di�erent amounts of memory. We note that for each workstation, there are several points at which the
amount of memory available is very low { these are points at which the workstation is likely to page and
the user is likely to perceive the memory of her workstation to be running short. The graphs in Figure 2
also show that even though such dips in memory availability occur frequently enough to be noticed, a
substantial fraction of the memory is available on individual workstations most of the time. We conclude
the perception of memory being short is based on infrequently occurring worst-case memory requirements
and that a substantial fraction of memory on a workstation is available if we look at day-long/week-long
intervals.

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e
M

em
or

y
(M

B
)

Time (days)

availmem

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e
M

em
or

y
(M

B
)

Time (days)

availmem

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e
M

em
or

y
(M

B
)

Time (days)

availmem

(a) 32 MB machine (b) 64 MB machine (c) 128 MB machine

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e
M

em
or

y
(M

B
)

Time (days)

availmem

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
va

ila
bl

e
M

em
or

y
(M

B
)

Time (days)

availmem

(d) 256 MB machine (e) 1 GB machine

Figure 2: Variation in available memory for individual workstations. Note that the range of the y-axis is
di�erent for each of the graphs. For each graph, the y-range corresponds to the total memory on the machine.
These graphs show that while there are \dips' in memory availability, large fractions of a workstation's
memory is available most of the time.

3 The design of Dodo

The design of Dodo is based on that of Condor [11], one of the most successful systems for harvesting
idle resources.2 Each application is linked to a library that implements the functionality needed by the
application in order to create, read, write, and delete remote memory regions. In contrast to global memory
systems such as GMS [7] where applications use remote memory pages implicitly, Dodo requires applications
to make explicit use of remote memory. This is an fundamental trade-o� in the design-space for remote
memory systems. Implicit memory-sharing systems, such as GMS, allow applications to run without being
modi�ed. However, implementing such systems requires modi�cation of the virtual memory system (and
possibly the processor �rmware). Explicit memory-sharing systems, such as Dodo, require application-level
modi�cation. However, they require no modi�cations to the kernel or the processor �rmware. The history
of resource-harvesting systems has shown that portability (with respect to both processor architecture and
the operating system) is an important requirement for their success and longevity. User-level systems like

2Condor has been operational at the University of Wisconsin for over a decade.

4

Condor have
ourished for over a decade through several generations of processors and operating systems.
Since our goal was to avoid becoming extinct like our namesake, we selected a user-level design for Dodo.

We chose an explicit and synchronous interface for portability and simplicity. Dodo has been designed
to run on Unix platforms. Note that in Dodo, remote memory is used for read-only caching. Writes to
remote memory are propagated to disk in parallel to being sent to the remote host. An explicit interface
has the disadvantage that it requires the programmer to keep track of memory usage and to coordinate all
data transfer to and from the remote memory cache. To lighten this burden, we have developed a region-
management library that can be layered on top of Dodo. This library is linked in with the application
and tracks region-usage on the machine it is running on. It implements several region-replacement policies
including LRU and �rst-in.

Dodo is targeted towards two environments: (i) non-dedicated clusters of desktop machines, and (ii)
dedicated Beowulf-class clusters of commodity-priced workstations [18]. Each machine in a desktop cluster
has an owner and is recruited only when the console is not in use and the machine is lightly loaded. Each
machine in a dedicated cluster is recruited whenever it is lightly loaded.

We �rst describe the architecture of Dodo. We then describe its application-level interface. Finally, we
describe the region-management library.

3.1 Dodo architecture

In addition to the runtime library mentioned above, Dodo has three other components: (i) resource monitors,
(ii) a central memory manager and scheduler, and (iii) idle memory daemons. Resource monitors execute
on each participating workstation and notify the central manager when a workstation becomes idle. Dodo
recruits the memory of a workstation only if the workstation is idle. We made this decision for two reasons.
First, even though hosting guest memory pages while the workstation is in use is likely to have a smaller
impact on the owner of the workstation than hosting guest processes, many workstation owners will probably
be unwilling to permit such usage because of social reasons. Second, as shown by a recent study [22], processor
cycles consumed for handling remote memory requests can, in some situations, degrade the performance of
the owner's jobs.

Two kinds of information are used by the resource monitors to determine if a workstation is to be
considered idle { mouse, keyboard and processor usage information and user preferences speci�ed as a set
of rules. A workstation is considered idle by its resource monitor if there was no user activity (keyboard
or mouse) and the load (as reported by w) is less than 0.3 for �ve minutes or more.3 User preferences are
used to give the owner of the workstation complete control over when her machine is recruited by Dodo. We
borrowed the user preference rules used by Condor for the design of Dodo.

The design of the Dodo central memory manager resembles that of the Condor central manager [19]. The
central memory manager runs on a dedicated machine and keeps track of the idle workstations in the cluster
as well as the amount of memory available on each workstation. This information is provided by the resource
monitors on individual machines. It also keeps a directory of memory objects that have been allocated. The
information provided by the resource monitors is taken as a hint { the central memory manager veri�es the
availability of memory before allocating it. To handle faults at the application-end, the central memory
manager periodically sends keep-alive echo requests to the runtime library linked in with the application. If
it determines that an application is no longer alive, it reclaims all memory-regions allocated to it.

An idle memory daemon is started on a workstation (by the resource monitor) when it is recruited and
is terminated (also by the resource monitor) as soon as the workstation becomes busy. It stores remote
memory regions in its address space and supplies them on request. The idle memory daemon keeps track
of how much space it has available. It does not release memory back to the operating system when remote
memory objects are deleted. Instead, this memory is marked as free and reused when a new remote object
is created.

In order to limit the impact of hosting guest data on workstation owners, we restrict the maximum
amount of memory that is recruited from a workstation. The idle memory daemon uses a suite of inquiry
programs to determine the memory in use (on Solaris 5.6, this suite consists of netstat, ps, memps and
pmem). To this, it adds (i) the memory in the paging free list (lotsfree), and (ii) a \headroom" of 15% of

3This measure of workstation idleness has been used in several studies of workstation utilization.

5

the total memory to account for the �les in the �le cache that are not currently open but might be opened
in near future. The �gure of 15% comes from our study of memory usage [2] which indicated that 15% of
total memory is usually enough to hold the live �les in the �le-cache.

Applications use the Dodo runtime library to explicitly control the contents of the remote cache. To
allocate remote memory for an object, the application makes a request to the runtime library which, in turn,
makes a request to the central manager. The central manager (randomly) selects a remote host from the list
of hosts it believes to have enough memory to satisfy the request. It contacts the idle memory daemon on
the selected machine to allocate the requested space. If the selected host is no longer available (e.g., due to
a shutdown or a crash or the user reclaiming the workstation), the central manager tries again with another
host. If the allocation is successful, a descriptor is returned to the library which includes the identity of the
remote host and a memory-region identi�er on that host. The allocation fails if su�cient memory is not
available. When this happens, the library refrains from making allocation calls for a �xed time period, called
the refraction period. The motivation behind this is to reduce the cost of allocation attempts in a period
when the allocation attempts are not likely to succeed. When an attempt to access a memory region on a
particular node fails (either because the node has crashed, or because it is no longer available for hosting
remote memory, or because it has previously dropped the remote memory region that was requested), the
library drops all the descriptors for memory regions stored on that node.

3.2 Dodo programming interface

Dodo manages the idle memory of a workstation cluster and provides a caching service for applications.
Applications access Dodo using an API similar to the stdio API provided by the C runtime library. The
main routines provided by Dodo are mopen(), mread(), mwrite(), and mclose() (see Figure 3 for the API).

� mopen() allocates a new remote memory region of given length and associates with it a backing region
on disk. The backing region is described by an open �le descriptor and an o�set within that �le. This
requires the application to open the �le a priori but provides the
exibility of in-place updates on the
disk(e.g., for out-of-core scienti�c applications). It contacts the central memory manager to allocate
the memory-region. It returns a non-negative integer as a descriptor for the region. This descriptor is
to be used for all subsequent operations on that region. If mopen is unsuccessful due to lack of memory,
it returns -1 and sets errno to ENOMEM. If mopen is unsuccessful because the backing �le descriptor
is invalid or the backing �le has not been opened in write mode or if the length is less than 1 or if the
o�set is less than 0, it returns -1 and sets errno to EINVAL.

� mread() tries to read len bytes from a given memory-region into buffer. The offset �eld can be
used to read data from the middle of the region. It returns the number of bytes actually read. If
the memory-region is not currently active (if the descriptor is not valid or if the remote host/daemon
has crashed or if the memory-region has been reclaimed since it was allocated), it returns -1 and sets
errno to ENOMEM. If the arguments are not valid (o�set beyond the end or invalid bu�er pointer),
it returns -1 and sets errno to EINVAL. Finally, if len bytes are not available at the request o�set, it
reads as many bytes as are available.

� mwrite() writes the len bytes from buffer to the backing �le as well as to the given memory-region.
The offset �eld can be used to write data into the middle of the region. It returns the number of
bytes actually written into the region. If the memory-region is not currently active (if the descriptor is
not valid or if the remote host/daemon has crashed or if the memory-region has been reclaimed since
it was allocated), it returns -1 and sets errno to ENOMEM. If the arguments are not valid (o�set
beyond the end or invalid bu�er pointer), it returns -1 and sets errno to EINVAL. Finally, if len bytes
cannot be written at the request o�set, it writes as many bytes as possible. If the write to the backing
�le fails for some reason, it returns -1 and passes the errno value set by the erring call to write().

� mclose() deallocates a previously allocated memory-region. It contacts the central memory manager to
free up the memory-region. It returns 0 if successful. It returns -1 and sets errno to EINVAL if the
descriptor is invalid or has already been reclaimed or if it is not able to contact the central memory
manager. It does not close the �le descriptor associated with the region.

6

int mopen(size_t len, int fileDescriptor, int offset)

/* returns a memory region descriptor */

int mread(int regionDescriptor, int offset, void *buffer, size_t len)

/* returns the number of bytes read */

int mwrite(int regionDescriptor, int offset, void *buffer, size_t len)

/* returns the number of bytes written */

int mclose(int regionDescriptor)

/* deallocates the regionDescriptor */

int msync(int regionDescriptor)

/* returns only when all data in region is on disk */

Figure 3: The Dodo application programming interface.

� msync() blocks till all data in the given region has been written to disk.

3.3 Region-management library

The region-management library is layered on top of the Dodo runtime library and is meant for use by
applications with well-de�ned memory access patterns. It tracks region-usage on the machine it is running
on and implements several region-replacement policies including LRU and �rst-in. It frees the programmer
from the responsibility of coordinating data transfers to/from remote memory. Note that the use of this
library is optional { applications whose access patterns do not �t the region-management policies provided
by this library can directly access the Dodo runtime library.

The region-management library provides a wrapper for every call in the Dodo API (see Figure 4 for the
interface). It allocates and manages a local cache of memory regions. It provides the csetPolicy() call to
allow the programmer to specify a region-replacement policy for this cache (LRU/MRU/�rst-in etc). If no
policy is speci�ed, it assumes an LRU policy. It ensures that every region allocated by the application is
one of four states: (1) cached locally, (2) cached remotely, (3) cached locally and remotely, (4) not cached in
memory (only on disk). Every time control is transferred to the library (via a call to one of its routines), it
checks if there is enough space to perform the operation. If not, it scans the cache to �nd regions that can be
migrated to remote cache. The library is modularized to make it easy to add modules for region-replacement
policies. To add a new policy module, the following procedures need to be speci�ed:

� A pair of state-management procedures which are called whenever the application calls cread()/cwrite().
These functions can keep track of the access-pattern.

� A reclamation procedure which is called whenever the library runs of space in the local region-cache.
This procedure takes a pointer to the local cache-directory as an argument.

4 Implementation of Dodo

Our implementation of Dodo is operational and currently runs on Linux 2.0.35. It consists of three daemons
and two runtime libraries. The daemons are the central manager daemon (cmd), the resource monitor daemon
(rmd) and the idle memory daemon (imd); the runtime libraries are libdodo.a, the mainDodo runtime library
and libmanage.a, the region management library layered on top of libdodo. For communication, it can use
either UDP/IP or U-Net, the low-latency user-level network architecture developed by von Eicken et al [4].
For programming convenience and portability, we have developed a library, libusocket.a, that provides

7

int copen(size_t len, int fileDescriptor, int offset)

int cread(int regionDescriptor, int offset, void *buffer, size_t len)

int cwrite(int regionDescriptor, int offset, void *buffer, size_t len)

int cclose(int regionDescriptor)

int csync(int regionDescriptor)

int csetPolicy(int policy)

Figure 4: The region-management library interface. The csync() call can be used to force an immediate
write for a region in the local cache. It blocks till the region has been written to remote memory and to disk.

functionality similar to UDP sockets on top of U-Net. The complete distribution is about 10,000 lines of
code. In this section, we describe di�erent components of the Dodo implementation.

4.1 The resource monitor daemon (rmd)

A resource monitor daemon runs on every participating machine and monitors the user activity as well as the
load on the machine. Its functions are: (1) determine when the machine becomes busy/idle; (2) notify the
central manager daemon about changes in machine status (busy/idle); (3) create the idle memory daemon
when the machine is recruited for hosting guest data; and (4) kill the idle memory daemon when the machine
is reclaimed.

To monitor the status of the machine, rmd checks mouse/keyboard activity as well as process load once
every second. It de�nes the console of a machine to be idle if there is no activity on either the mouse or the
keyboard (it uses the stat system call to monitor the access times for the corresponding device �les). It
de�nes the processor to be idle if the process load is greater than 0.3. It uses two sources of information to
determine the process load. It uses information from the �le /proc/uptime to determine the average load
on the machine. To eliminate the impact of the screen saver and the idle memory daemon on the process
load number, it determines the processor usage of these processes if present. It de�nes the processor to be
busy if the remaining process load is greater than 0.3. It de�nes a workstation to be idle when both the
console and the processor have been idle for more than �ve minutes.

When a machine switches state from busy to idle, rmd noti�es the central manager daemon and forks the
idle memory daemon. When a machine switches state from idle to busy, rmd noti�es the central manager
daemon and sends a signal to the idle memory daemon. The idle memory daemon handles the signal by
completing the ongoing transfers and exiting.

4.2 The idle memory daemon (imd)

The idle memory daemon is forked by rmd. It allocates a memory pool on startup and manages its usage.
The size of the pool is determined by estimating the amount of memory in active use (as described in
section 3). It initializes an epoch counter which it uses to timestamp the remote objects it caches. It also
spawns a thread that receives and serves memory-region read/write requests. All communication with the
central manager daemon is handled by the main thread.

During initialization, imd sends two items of information to the central manager daemon: (1) the amount
of memory available on the machine, and (2) the current value of the epoch counter. The idle memory
daemon receives and serves alloc and free requests from the central manager. It maintains a local directory
to keep track of the memory-regions currently allocated. Once allocated, a memory-region remains active
till either a corresponding free request arrives from the central manager or if imd terminates. The central
manager issues a free request under two conditions: (1) it receives a deallocation request from the application,
and (2) it receives no response to its keep-alive echo request within a threshold time period.

Since memory-regions can be of arbitrary size, there is a potential for fragmentation. The idle memory
daemon uses a �rst-�t policy for allocation and periodically runs a coalescing algorithm to reduce fragmenta-
tion. Given the explicit programming interface provided by Dodo, we expect that individual memory-regions

8

will be large and, usually, multiples of the pagesize. Furthermore, since applications free memory-regions
infrequently (usually just before termination), we don't expect fragmentation to be a major problem. Our
experience to date has matched this expectation. If this becomes a problem at a later date, we plan to switch
to a buddy-based allocation scheme.

4.3 The central manager daemon (cmd)

The central manager daemon runs on a dedicated machine and keeps track of the idle workstations in the
cluster as well as the amount of memory available on each workstation. This information is provided by the
resource monitor daemons on individual machines. It also keeps a directory of memory objects that have
been allocated. It maintains the following data structures:

� idle-workstation-directory (IWD): which keeps track of the currently idle workstations. For each
idle workstation, it records the last known epoch and the largest block that is known to be free. This
information is provided by the idle memory daemons and is taken as a hint { the central memory
manager veri�es the availability of memory before allocating it. This information is piggybacked on
all communication between the individual imds and the cmd.

� region-directory (RD): which keeps track of all allocated regions. For performance reasons, the
RD is organized as a hash table. Regions in the RD are keyed by a region-descriptor which consists
of a (inode-number-of-backing-�le, o�set-in-�le) pair.4 A region in RD is represented by a structure
containing the IP address of the machine that is hosting the region, the o�set in the memory pool of
the corresponding imd, the length of the region and an epoch-based timestamp.

The central manager daemon interacts closely with the Dodo runtime library. It exports three operations
to the runtime library and, in turn, requires the library to echo the periodic keep-alive messages it sends
to the library. The keep-alive messages allow cmd to reclaim memory-regions allocated by applications that
terminate without freeing these regions. If it determines that an application is no longer alive, it reclaims
all memory-regions allocated to it. The operations it exports to the runtime library are:

checkAlloc: this operation checks if a region is currently valid. On receiving this request, the cmd looks
up the region-descriptor in the region-directory. If the lookup fails, it returns a failure to the client. Else,
it checks to make sure that the epoch timestamps of the region-structure and that of the host workstation's
entry in the idle-workstation directory match. If they do, it returns the region-structure to the client; else it
deletes the region from the RD and returns a failure to the client.

alloc: this operation allocates a new memory-region. On receiving this request, the cmd scans the idle-
workstation-directory and extracts the list of workstations which it believes have at least one memory block
larger than or equal to the size of the request. It then randomly picks a workstation from this list and
issues a request to its imd. If the allocation is successful, it enters the new region in the region-directory and
returns the region-structure to the client. Else, it selects additional hosts at random till either it is able to
allocate the requested space or there are no more hosts with adequate free memory.

free: this operation frees a memory-region. On receiving this request, the cmd looks it up in the region-
directory. If a match is found, it forwards the request to the corresponding imd and deletes the entry in the
region-directory. Else, it returns a failure to the client.

4.4 The Dodo runtime library

In this section, we describe two components of the runtime library which have not been described in other
parts of this paper: (1) a protocol to transfer data between the client and the remote-memory servers; and
(2) a region-table used to keep track of memory-regions created by the application. A data transfer protocol

4This assumes that only one client is using Dodo at a time. We plan to extend this, in near future, to multi-client con�gu-
rations by including the IP address of the client in the key.

9

is needed as memory-regions can be of arbitrary size and cannot be expected to �t within individual packets
(� 1500 bytes for U-NET and 64 KB for UDP).

Bulk data transfer protocol: If the region does not �t in a single packet, it is partitioned in several
packets, and a sequence number is added to keep track of the total ordering. The sender negotiates the
amount of space available at the receiver and blasts as many packets as would �t in that space and waits.
The receiver waits for the same number of packets to arrive or a timeout to occur. If a timeout occurs,
it identi�es the missing packets using the sequence numbers and sends a selective NACK which lists the
missing sequence numbers. Since we assume all hosts are on the same local-area network, we do not expect
duplicate packets.5 We use iovec structures and the sendmsg and recvmsg operations to avoid copying to
and from a temporary bu�er: received data is directly copied from the receive socket bu�er into the memory
location of the block.

Region-table: keeps track of all regions created by the application. It is keyed by the region-handle and
stores a structure containing the following information: (1) a local/remote
ag; (2) the region-descriptor if
the region is remote; (3) size of the region; and (4) a unique identi�er for the region.

4.5 Region-management library

The region-management library manages a memory pool similar to that managed by the imds. Every time
control is transferred to the library (via a call to one of its routines), it checks if there is enough space to
perform the operation. If not, it scans the cache to �nd regions that can be migrated to remote cache (see
Figure 5 for the algorithm used). The library is modularized to allow multiple region-replacement policies.
To add a new policy module, the following procedures need to be speci�ed:

� A pair of state-management procedures which are called whenever the application calls cread()/cwrite().
These functions can keep track of the access-pattern.

� A reclamation procedure which is called whenever the library runs of space in the local region-cache.
This procedure takes a pointer to the local cache-directory as an argument.

Currently, the library provides two policies: LRU and �rst-in. The �rst-in policy is useful for applications
that sequentially scan their entire dataset multiple times. It caches regions in the order they were initially
accessed. Once a region is cached, it is not replaced. The decision to implement the �rst-in policy was
motivated by Uysal et al's study of the access patterns of a large suite of data-intensive applications [20].
They found that a large fraction of such applications have a sequential-scan or triangle-scan I/O access
patterns.

4.6 The U-Net-based socket library

U-Net is a low-latency user-level communication mechanism [4]. U-Net was designed to avoid the overhead of
operating systems by allowing the user to have access directly to the network interface. We downloaded the U-
Net distribution and ported it to our Network Interface Card, the SMC Etherpower 10/100 (SMC9332BDT).
For programming convenience and portability, we implemented a library with a UDP-socket-like interface
on top of U-Net (see Figure 6 for the API for this library). We also tuned our ethernet device driver for use
with this library.

5 Performance Evaluation

5.1 Experimental Platform

Our experimental platform consisted of a 16 node Beowulf-class cluster running Linux 2.0.35 at George
Mason University. Each node in this cluster has one or two 200 MHz Pentium Pro processors, 128 MB of
memory and a 3.2 GB Quantum Fireball ST3.2A disk. The nodes are connected by a 16-port BayStack 350

5The protocol can be extended to handle duplicate packets by dropping them.

10

procedure grimReaper()

static integer lastFailTime getCurrTime();

integer currTime, waitTime;

region R, M;

while (freeSpace(cache) < lowWaterMark)

R getRegionToEvict(currPolicy);

if (dirtyRegion(R))

writeToDisk(R);

end
currTime getCurrTime();

waitTime currTime - lastFailTime - refractionPeriod;

if (waitTime > 0)

wait(waitTime);

M cloneRemoteRegion(R);

if (M == null) /* no space in remote cache */

/* do no allocation for refractionPeriod */

lastFailTime = currTime;

else /* region moved to remote cache */

createRemoteEntry(M);

end
removeLocalEntry(R);

end
end

Figure 5: Procedure used by the region-managment library to reclaim space.

int u_socket(int sendbufsize, int recvbufsize);

int u_close(int usockfd);

macaddr_t u_aton(const char *str_addr);

char * u_ntoa(const macaddr_t macaddr, char *str_addr);

int u_bind(int usockfd, macaddr_t *macaddr, int nbaddr);

int u_connect(int usockfd, const macaddr_t macaddr);

int u_send(int usockfd, const void *buff, size_t len);

int u_send_iovec(int usockfd, struct iovec *iov,int iovc);

int u_recv(int usockfd,void *buff, size_t len,

macaddr_t *macaddr, int timeout);

int u_recv_iovec(int usockfd, struct iovec *iov, int *iovc,

macaddr_t *macaddr, int timeout));

Figure 6: Programming interface for the usocket library.

11

10/100 Autosense Fast Ethernet switch. Each node has a SMC Etherpower 10/100 PCI Network card
(SMC9332BDT), which is capable of full-duplex operation and is based on the Dec \Tulip" DS21140 chip.

We used 14 of the 16 nodes on the cluster for our experiments. Of these, one node was used for running
the data-intensive application, and another was used for running the central manager daemon (cmd), while
the remaining 12 nodes were used for running idle memory daemons and hosting application data. Each imd

allocates a memory pool of 100 MB on startup; thus, the total remote memory available to an application
in our experiments is 1200 MB. In addition, we used the region-management library which allocated a local
cache of 80 MB on the node being used to run the application. The application's dataset is stored on the
local disk attached to this node. This disk (a 3.2 GB Quantum Fireball ST3.2) has an average seek time of
10 (11) ms for reads (writes), maximum seek time of 12 (13) ms for reads (writes) and a rotational speed of
5400 RPM. The application-level bandwidth6 achievable for this disk is 7.75 MB for sequential 8 KB/32 KB
read requests, 0.57 MB/s for random 8 KB requests and 1.56 MB/s for random 32 KB requests. For the
experiments involving the use of the U-Net communication library, we loaded a modi�ed version of the U-Net
Ethernet driver for the DEC \Tulip" chip.

5.2 Benchmarks

We used two real applications and three synthetic benchmarks to evaluate the performance improvements
that can be achieved via Dodo.

5.2.1 Real applications

dmine: this application tries to extract association rules from retail data [3, 13] consisting of 10 million
transactions, with an average transaction size of 20 items and a maximal potentially frequent set size of 3.
This application has a data set size of 1 GB. It has a multi-scan data access pattern; accordingly, we used a
�rst-in region-replacement policy. Almost all the read requests made by this application are 128 KB each.

lu: this application computes the dense LU decomposition of an out-of-core matrix [9]. The dataset consisted
of an 8192 � 8192 double precision matrix (total size 536 MB) with a slab size of 64 columns. The data
is stored in 8 �les. This application exhibits a triangle-scan I/O pattern, with most of its I/O requests
being reads. Accordingly, we used a �rst-in region-replacement policy. The average I/O request size of this
application is large (330 KB); however, I/O requests range in size from 12 KB to 516 KB.

We chose these applications as representatives of two classes of applications. We chose lu to represent
computationally intensive applications with large data sets whose memory footprint exceeds the amount of
memory available on a single machine but is less than the the total memory available in the cluster. We
chose dmine to represent a class of applications whose dataset size straddles the total available memory on
the cluster.

Another di�erence between these two applications arises from the manner in which remote memory is
used by the applications. In the case of lu, all remote memory regions created by an application are deleted
at its completion. Thus any performance bene�t obtained from remote memory is due to accessing the same
object multiple times during a single run. This corresponds to the operation of out-of-core applications that
use remote memory to hold temporary data. For dmine, remote memory regions are not deleted at the end
of a run. Instead, they are retained in remote memory. This corresponds to the operation of applications
that access persistent data.

5.2.2 Synthetic Benchmarks

In addition to these applications, we created three synthetic benchmarks to evaluate the impact of access-
patterns not exhibited by the real applications. These benchmarks can be parameterized to study the impact
of factors such as dataset size and I/O request size on the performance of the system.

6Assuming reads are through the �lesystem and not to raw disk.

12

Each of the benchmarks performs num iter iterations; in each iteration, it reads its entire data set from
disk according to the access pattern described below. Each read request is of size req size with a constant
compute time of 10 ms between requests.

sequential: this benchmark sequentially reads its data set.

hotcold: this benchmark divides its dataset into a 20% \hot" region and a 80% \cold" region; 80% of the
references are to the \hot" region. Within each region, the requests are random.

random: this benchmark makes random read requests from the entire dataset.
In our experiments, we considered data sets of 1 GB and 2 GB and req sizes of 8 KB and 32 KB. We

set num iter to 4 for all experiments. For these benchmarks, all remote memory regions are created by an
application during its �rst iteration, and deleted at its completion. Thus any performance bene�t obtained
from remote memory is due to accessing the same object multiple times during a single run.

5.3 Results

Figure 7 shows the speedup obtained for lu and dmine using Dodo. The speedup observed for lu is modest {
1.2 while using U-Net and 1.15 using UDP sockets. This is primarily due to the fact that while lu does a lot
of I/O, it is actually compute-bound. It spends only 9% of its time doing I/O. We note, however, that the
running time of lu for this dataset is over 6 hours and a speedup of 1.2 represents an appreciable reduction
in the execution time.

The speedup obtained for dmine is signi�cantly higher { 3.2 using U-Net and 2.6 using UDP. dmine
spends a larger fraction of its execution time doing I/O than lu and has a larger data set (1 GB). Note that
the �rst run of dmine on the cluster does not exhibit any speedup. The speedup is obtained on subsequent
runs since dmine does not delete memory regions at the end of a run. In our experiments, the entire dataset
for dmine can be stored in the available remote memory during the �rst run. Subsequent runs can avoid all
disk accesses leading to the speedups observed.

0

0.5

1

1.5

2

2.5

3

3.5

lu dmine

Sp
ee

du
p

Unet

UDP

Figure 7: Speedup for lu and dmine using Dodo.

Figure 8 shows the speedups obtained for the three synthetic benchmarks for two dataset sizes (1 GB
and 2 GB) and two I/O request sizes (8 KB and 32 KB). We observe that there is virtually no speedup
obtained for the sequential benchmark. This is to be expected since the Linux �le system is optimized for
sequential access patterns and the end-to-end bandwidth attained on the disk for a sequential access pattern
is comparable to the bandwidth of the network. For hotcold and random, the speedup is signi�cantly higher
re
ecting the random I/O access patterns of these benchmarks.

Increasing the I/O request size from 8 KB to 32 KB results in a decrease in the speedup obtained from
the use of remote memory for random and hotcold. This re
ects the fact that these benchmarks become

13

(A)

0

0.5

1

1.5

2

2.5

3

3.5

Random Hotcold Sequential

S
p

ee
d

u
p

Unet

UDP

(B)

0

0.5

1

1.5

2

2.5

3

Random Hotcold Sequential

S
p

ee
d

u
p

Unet

UDP

(D)

0

0.5

1

1.5

2

2.5

Random Hotcold Sequential

S
p

ee
d

u
p

Unet

UDP

(C)

0

0.5

1

1.5

2

2.5

3

3.5

Random Hotcold Sequential

S
p

ee
d

u
p

Unet

UDP

Figure 8: Speedup for the synthetic benchmarks using Dodo for (A) 8 KB request size, 1 GB data set (B) 32
K request size, 1 GB dataset (C) 8 KB request size, 2 GB data set (D) 32 KB request size, 2 GB data set.

less I/O bound when the I/O request size is increased to 32 KB. However, the speedup obtained for the
sequential benchmark is slightly higher for the larger block size. This is because the performance of Dodo
improves for larger block sizes, while the performance of the �le system is una�ected by the larger block size
for sequential access patterns.

Increasing the dataset size from 1 GB to 2 GB results in a reduction in speedup for both sequential

and random. This reduction in speedup is more appreciable in the case of random, since the speedup of
sequential is small for both data set sizes. This reduction in speedup is to be expected since the entire
data set of 2 GB does not �t in the available remote memory (1.2 GB), whereas a data set of 1 GB can �t
in the remote memory.

In the case of hotcold, however, increasing the data set size from 1 GB to 2 GB results in an increase in
the speedup. This re
ects the fact that the hot portion of the data set increases in size from 200 MB to 400
MB when the data set size is increased. This does not have a signi�cant impact on the performance of the
application when it can use remote memory. However, the performance of the application without remote
memory caching is much worse for the larger data set since local �le-cache is less e�ective in reducing the
number of disk accesses.

In all cases, the use of the U-Net communication library results in an appreciable performance improve-
ment over UDP sockets. This is to be expected given the higher overhead of UDP in comparison to U-Net.

14

What is noteworthy, however, is the fact that even while using UDP, we can obtain signi�cant speedups
for all our benchmarks. Overall, our results show that Dodo results in signi�cant performance bene�ts for
data-intensive applications that can exploit the zero-seek nature of remote memory.

5.3.1 Discussion

The results described above show the performance bene�ts of using Dodo to exploit remote memory on a
dedicated Beowulf-class cluster. As discussed in earlier sections, Dodo has been designed to exploit idle
memory in non-dedicated clusters while minimizing any inconvenience caused to owners of workstations.
While we have not yet deployed Dodo in such a production environment, we have evaluated its performance
in such environments via trace-driven simulation. Our results, reported in [2] show that Dodo can result in
signi�cant performance speedups on non-dedicated clusters. Further, our results show that using a memory
recruitment policy that targets only idle hosts and that does not harvest more memory than is idle on the
host ensures that users experience virtually no delays when reclaiming their workstations.

6 Conclusions

In this paper, we have presented the design and implementation of Dodo, an e�cient user-level system for
harvesting idle memory in o�-the-shelf clusters of workstations. Dodo enables data-intensive applications to
use remote memory in a cluster as an intermediate cache between local memory and disk. It requires no
modi�cations to the operating system and/or processor �rmware and is hence portable to multiple platforms.
Further, the memory recruitment policy used by Dodo is designed to minimize any delays experienced by
the owner of desktop machines whose memory is harvested by Dodo.

We have implemented Dodo on a Beowulf class Linux cluster. For communication, Dodo can use either
UDP/IP or U-Net, the low-latency user-level network architecture developed by von Eicken et al [4]. We
evaluated the improvements that can be achieved by using Dodo for two real applications and three synthetic
benchmarks. Our results show that speedups obtained for an application are highly dependent on its I/O
access pattern and data set sizes. Signi�cant speedups (between 2 and 3) were obtained for two kinds
of applications: (i) applications such as dmine and hotcold whose working sets are larger than the local
memory on a workstation but smaller than aggregate memory available on the cluster (ii) applications such
as random that can bene�t from the zero-seek nature of remote memory.

Finally, our results also show that the use of the U-Net communication library results in an appreciable
performance improvement over UDP sockets. This is to be expected given the higher overhead of UDP in
comparison to U-Net. What is noteworthy, however, is the fact that even while using UDP, we can obtain
signi�cant speedups for all our benchmarks.

References

[1] A. Acharya, G. Edjlali, and J. Saltz. The utility of exploiting idle workstations for parallel computa-
tion. In Proceedings of 1997 ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, 1997.

[2] A. Acharya and S. Setia. Availability and utility of idle memory in workstation clusters. Technical
Report TRCS98-26, Dept of Computer Science, University of California, Santa Barbara, 1998.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. of
20th Int'l Conf. on Very Large Databases (VLDB), Santiago, Chile, Sept. 1994.

[4] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-net: A user-level network interface for parallel and
distributed computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP), 1995.

[5] D. Comer and J. Gri�oen. A new design for distributed systems: The remote memory model. In
Proceedings of the 1990 USENIX Summer Conference, 1990.

15

[6] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative Caching: Using Remote Memory to
Improve File System Performance. In Proceedings of the First Symposium on Operating System Design
and Implementation, pages 267{80, Nov 1994.

[7] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Implementing Global Memory
Management in a Workstation Cluster. In Proceedings of the 15th ACM Symposium on Operating System
Principles, pages 201{12, Dec 1995.

[8] E. Felten and J. Zahorjan. Issues in implementation of a remote memory paging system. Technical
Report 91-03-09, Department of Computer Science, University of Washington, 1991.

[9] B. Hendrickson and D. Womble. The torus-wrap mapping for dense matrix calculations on massively
parallel computers. SIAM J. Sci. Comput., 15(5), Sept. 1994.

[10] L. Iftode, K. Li, and K. Petersen. Memory Servers for Multicomputers. In COMPCON Spring'93 Digest
of Papers, pages 538{47, Feb 1993.

[11] M. Litzkow and M. Livny. Experiences with the Condor Distributed Batch System. In Proceedings of
the IEEE Workshop on Experimental Distributed Systems, pages 97{101, Oct 1990.

[12] 512 MB PC100 SDRAM with ECC7. Micro X-press Inc. 5406 west 78th street Indianapolis, IN 46268,
Oct 1998.

[13] A. Mueller. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical
Report CS-TR-3515, University of Maryland, College Park, August 1995.

[14] T. Narten and R. Yavatkar. Remote Memory as a Resource in Distributed Systems. In Proceedings of
the 3rd Workshop on Workstation Operating Systems, pages 132{6, April 1992.

[15] 128 MB PC100 SDRAM8. Advanced PCBoost, PO Box 80811, Rancho Santa Margarita, CA 92688,
Oct 1998.

[16] P. Sarkar and J. Hartman. E�cient cooperative caching using hints. In Proceedings of the 2nd Symposium
on Operating Systems Design and Implementation, 1996.

[17] B. Schilit and D. Duchamp. Adaptive remote paging for mobile computers. Technical Report CUCS-
004-91, Department of Computer Science, Columbia University, 1991.

[18] T. Sterling et al. Preliminary report: Findings of the �rst NASA workshop on Beowulf-class clustered
computing,. http://www.cacr.caltech.edu/ tron/pubs/beowulfprelim.html, Oct 1997.

[19] T. Tannenbaum and M. Litzkow. The Condor Distributed Processing System. Dr. Dobbs' Journal,
20(2):42{4, Feb 1995.

[20] M. Uysal, A. Acharya, and J. Saltz. Requirements of I/O systems for parallel machines: An application-
driven study. Technical Report CS-TR-3802, Department of Computer Science, University of Maryland,
1997.

[21] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase, A. Karlin, and H. Levy. Implementing
cooperative prefetching and caching in a globally-managed memory system. In Proceedings of the
1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer
Systems, pages 33{43, 1998.

[22] G. Voelker, H. Jamrozik, M. Vernon, H. Levy, and E. Lazowska. Managing Server Load in Global
Memory Systems. In Proceedings of the 1997 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pages 127{138, June 1997.

7http://www.microx-press.com/online/ following link from http://www.pricewatch.com
8http://www.pcboost.com following link from http://www.pricewatch.com

16

