
Adding Reliable and Self-Healing Key Distribution to the Subset Difference
Group Rekeying Method for Secure Multicast

Sencun Zhu, Sanjeev Setia, and Sushil Jajodia

Center for Secure Information Systems, George Mason University, Fairfax, VA 22030.
{szhu1,setia,jajodia }@gmu.edu

Abstract. We study two important issues related to the Subset Difference Rekeying (SDR) method [4]. First, we
present a reliable key distribution scheme, called WFEC-BKR, that enables members to receive the current group
key in a reliable and timely fashion inspite of packet losses in the network. Through simulation, we show that in
most scenarios, WFEC-BKR outperforms previously proposed schemes for reliable rekey transport. Second, we
present a group key recovery scheme that adds the self-healing property to SDR, i.e., our scheme enables a member
that has missed up to a certain numberm of previous rekey operations to recover the missing group keys without
asking the key server for retransmission. The additional communication overhead imposed by our key recovery
scheme is quite small (less than3m additional keys).

1 Introduction

In recent years, many approaches for scalable group rekeying have been proposed, e.g. LKH [8, 9, 11], OFT [1],
MARKS [2], Subset Difference [4] and self-healing [6]. Further, it has been proposed that groups be re-keyed period-
ically instead of on every membership change [5, 10]. Periodic or batched rekeying can reduce both the processing and
communication overhead at the key server, and improve the scalability and performance of key management protocols
based on logical key trees.

In addition to the rekeying algorithm, the communication overhead of group rekeying also depends on the proto-
col used for reliably delivering the updated keys to the members of the group. Recently, researchers have proposed
customized reliable multicast protocols for group rekeying, e.g., Proactive-FEC [10] and WKA-BKR [7], which take
advantage of the special properties of the rekey payload for achieving reduced communication overhead in comparison
to conventional reliable multicast protocols.

Among the rekeying protocols proposed in the literature, the Subset Difference Rekeying method (SDR) [4] is one
of the few protocols that have the property ofstatelessness. In a stateless rekeying protocol, in order to decode the
current group key, a member only needs to receive the keys that are transmitted by the key server during the current
rekey operation. This property makes SDR very attractive for secure multicast applications where members may go
off-line frequently or experience burst packet losses. Furthermore, SDR has been shown to be very efficient in terms
of communication overhead.

In this paper, we study two important issues related to the key delivery protocol used for the SDR method. First,
we address the issue of reliable rekey transport for SDR. We present a key distribution scheme, called WFEC-BKR,
that enables members to receive the current group key in a reliable and timely fashion despite the presence of packet
losses in the network. WFEC-BKR is a hybrid protocol that combines the advantages of two previously proposed rekey
transport protocols – the proactive FEC based key delivery protocol [10] and the WKA-BKR protocol [7]. Through
simulation, we show that in most scenarios, WFEC-BKR outperforms the other rekey transport protocols.

Second, we examine the issue ofself-healinggroup key distribution for SDR. We present a key recovery scheme
that adds the self-healing property to SDR, i.e., the scheme enables a member that has missed up to a certain number
m of previous rekey operations to recover the missing group keys without asking the key server for retransmission.
This self-healing key recovery property results in reduced network traffic and also reduces the load on the key server,
and is especially useful for group members that may experience burst packet losses. Through a detailed simulation, we
found that the communication overhead imposed on the key server by our recovery scheme is quite small (less than
3m additional keys).

The reminder of this paper is organized as follows. In Section 2, we discuss related work and introduce the SDR
method in more detail. In Section 3 we present our hybrid reliable key distribution scheme and evaluate its performance

1

through detailed simulation. Section 4 describes our key recovery schemes and its performance. Finally, we summarize
our work in Section 5.

2 Related Work

The group rekeying protocols proposed in the literature can be divided into stateful and stateless protocols. The stateful
class of protocols includes several protocols based upon the use of logical key trees, e.g., LKH [8, 9] and OFT [1].
In these protocols, a member must have received all the key encryption keys of interest in all the previous rekey
operations; otherwise, it will be unable to decode the new (group) key being transmitted during the current rekeying
operation, and will have to ask the key server to retransmit any keys it is missing. Among these protocols, neither LKH
nor OFT includes any mechanisms for reliable key distribution. To address the issue of reliable key delivery for these
group rekeying approaches, researchers have proposed protocols based on the use of proactive redundancy such as the
proactive-FEC based key delivery protocol [10] and WKA-BKR [7]. However, these protocols only address the issue
of reliable key delivery for thecurrentrekeying operation.

Statelessgroup rekeying protocols form the second class of rekey protocols. In these protocols, a legitimate user
only needs to receive the keys of interest in the current rekey operation to decode the current group key. In other
words, there is no dependency between the keys used in different rekeying operations. One such protocol is the subset
difference rekeying method (SDR) presented by Naoret al [4]. In this paper, we focus on key delivery protocols for
SDR. Hence, in Section 2.1, we describe SDR in more detail.

Another example of a stateless protocol is the self-healing key delivery protocol proposed by Staddonet al [6]. In
addition to statelessness, this protocol has the property (referred to as self-healing) that a group member that has not
received a previous group key (due to network packet loss) can recover that group keyon its ownwithout contacting
the key server. The self-healing protocol is based on polynomial-based secret sharing techniques. We note that this
protocol has two limitations that may discourage its deployment for some applications. First, in this protocol, an
application’s lifetime is pre-divided into a certain number of sessions, and the key server initiates a group rekeying at
the beginning of each session. Thus, this protocol is not suitable for applications which have a security requirement
of immediate user revocation. Second, the maximum allowed number of revoked users during these these sessions has
to be pre-determined and must not be exceeded for the protocol to be secure. In Section 4, using techniques such as
one-way key chains, we propose a protocol that adds the self-healing property to the SDR method with very small
additional overhead. In addition, our protocol can perform immediate group rekeyings and there is no upper bound on
the number of revoked users.

We note that periodic batched rekeying has been shown to improve the scalability and performance of group key
management protocols [5, 10]. As such, in this paper we discuss our key delivery schemes for SDR in the context of
periodic batched rekeying. (Note, however, that our key delivery schemes can be used for both individual and batched
rekeying.)

2.1 Subset Difference Rekeying Method

In SDR, during a rekey operation the key server partitions the current members of the group into a minimal number of
subsets, and then encrypts the new group key with the common key of each subset separately. Hence, the number of
encrypted keys to be distributed to the users is the same as the number of subsets the method generates.

Figure. 1 illustrates a subsetSij in SDR. The users are viewed as leaves in a complete binary tree. The subsetSij

can be thought as the set of users in the subtree rooted at nodeVi minus the set of users in the subtree rooted at node
Vj . More generally, a valid subset S is represented by two nodes in the tree (Vi, Vj) such thatVi is an ancestor ofVj .
A leaf u is in Si,j iff it is in the subtree rooted atVi but not in the subtree rooted atVj . The subsetSij is associated
with a unique key only known by the users inSij . We refer the reader to [4] for a description of the key assignment
algorithm.

Let N be the set of all users andR the set of revoked users. Let Cover denote the subset cover, i.e., the collection
of disjoint subsetsSi1,j1, Si2,j2, ..., Sim,jm which partitionsN \ R. Let T be the backbone tree induced by the setR
of vertices and the root, i.e., the minimal subtree of the full binary tree that connects all the leaves inR. The algorithm
for finding the subset cover is as follows. Consider maximal chains of nodes with outdegree1 in T . More precisely,

2

Vi

Vj

leaves

Sij

Fig. 1.The Subset Difference Rekeying Method. The
solid leaf nodes denote the revoked users. SubsetSij

contains the current members.

leaves

b f

a c

d

g

h

e

Fig. 2.An example of SDR where all the solid nodes form the backbone
treeT .

each such chain is of the form [vi1, vi2,... vil] where (i) all ofvi1, vi2, ..., vil−1 have outdegree1 in T (ii) vil is either
a leaf or a node with outdegree2 and (iii) the parent ofvi1 is either a node of outdegree2 or the root. For each such
chain wherel ≥ 2 add a subsetSi1,il to Cover. Note that all nodes of outdegree1 in T are members of precisely one
such chain.

In Fig. 2, we show an example of the key tree in SDR. The solid leaves corresponds to all the revoked nodes in
R, and all the solid nodes form the backbone treeT that connects all these leaves. Based on the above algorithm, we
can easily get all the subsets,{Sab, Scd, Sef , Sgh}, because the nodesa, c, e, g have outdegree of1 while their parents
have outdegree of2, andb, d, f, h either are leaf nodes or have outdegree of2.

Naoret al [4] show that the average number of subsets in the subset cover is1.25r when there arer revoked users
in R. Thus, the communication complexity (i.e., the number of subsets) is independent of the group size, which makes
this algorithm very scalable, particularly whenr � |N | (Chen and Dondeti [3] show that SDR performs better than
LKH for rekeying of large batches). The number of keys stored by each user is0.5log2|N |.

In this algorithm, a current group memberu only needs to receive exactlyoneencrypted key in every rekeying,
which is the new group key encrypted with the key of a subset to which it belongs. Because useru is provided with
the keys for all the subsets it might belong to at the time it joins the group, the key encryption keys used in each rekey
operation are independent of each other, leading to the stateless nature of the protocol. Note that in SDR the key tree
does not expand or shrink when users join or depart so that the keys a user obtains from the key server at its joining
time never need to be updated. Therefore, the key tree maintained by the key server has to be large enough to hold all
the potential users that may join the group during the lifetime of the application. Further note that in every rekeying,
the key server considers all the leaf nodes that have not been mapped to new users as revoked nodes when it computes
the subset cover, for the purposes of backward confidentiality.

3 Reliable Key Delivery for SDR

In a group rekeying, the key server first executes the SDR algorithm to determine the subset cover for all the current
members of the group. Then it generates a new group key, and encrypts the group key separately with the common
key of each subset in the subset cover. Finally, it multicasts all the encrypted keys to the group. The question we wish
to address is: how can every on-line user receive the new group key in a reliable and timely fashion in the presence of
packet losses in network?

Previous work on the problem of reliable key delivery such proactive FEC based key delivery protocol [10] and
WKA-BKR [7] has focussed on the LKH algorithm and not on SDR. In this section, we first discuss the application
of these approaches to SDR and then present an improved hybrid approach called WFEC-BKR.

Proactive FEC-based Key DeliveryIn the proactive FEC-based approach [10], the key server packs the encrypted
keys into packets ofsk keys. These packets are divided into FEC blocks ofk packets. The key server then generates

3

d(ρ − 1)ke parity packets for each block based on Reed Solomon Erasure (RSE) correcting codes, whereρ ≥ 1 is
the pro-activity factor. A user interested in the packets from a certain block can recover all the original packets in the
block as long as it receives anyk out ofdkρe packets from the block. If a user does not receive a packet that contains
the encrypted key of interest to it, but it receivest(t < k) packets from the block that contains this packet, it will ask
the key server for retransmission ofk − t new parity packets. The key server collects all the retransmission requests,
and then for each block it generates and transmits themaximumnumber of new parity packets required by users. The
retransmission phase continues until all the users have successfully received their keys.

WKA-BKR The WKA-BKR scheme [7] uses a simple packet replication technique in which packets are transmitted
multiple times, but it takes advantage of two properties of the rekey transport payload to minimize the overall band-
width overhead of a rekey operation. First, the encrypted keys are assigned different replication weights, depending
on the number of users interested in them and the loss rates of these users. Clearly, when a subset in the SDR method
covers a larger number of users or these users have higher loss rates, the encrypted key for this subset should be given
a higher degree of replication so that most of these users will receive the key reliably. Hence, in this scheme the key
server first determines the weightwi for each encrypted keyKi based upon the users interested in that key. It then
packs the keys that have the same weightbwic into the set of packetspi. When broadcasting the packets, the key
server sends packets inpi bwic times. This process is called weighted key assignment (WKA). Second, during the
retransmission phase, since each user that has made a retransmission request only needs one encrypted key to decode
the current group key, there is no need for the key server to retransmit the entire packet sent in the previous round that
contained the requested key. Instead, the key server repackages the keys that need to be retransmitted into new packets
before retransmitting them. This process is called batched key retransmission (BKR). The WKA-BKR scheme has
been shown to have a lower bandwidth overhead than the other schemes in most scenarios.

3.1 WFEC-BKR: A Hybrid Approach

In our comparative performance evaluation of the proactive-FEC based scheme and the WKA-BKR scheme [7], we
found that one reason that WKA-BKR has a lower bandwidth overhead than the proactive FEC-based approach is due
to the bandwidth efficiency of its retransmission scheme, i.e., BKR. In the proactive FEC based approach, the key
server retransmits themaximumnumber of required parity packets for each block. Therefore, the bandwidth overhead
is dominated by retransmissions due to users experiencing high packet losses. On the other hand, we found that
the proactive FEC-based approach usually has a smaller bandwidth overhead than WKA-BKR in the first round of
transmission, especially when the weights of many packets in WKA are larger than2. This is because RSE encoding
used in FEC is more efficient than the simple replication used in WKA. Further, we found that proactive FEC-based
protocols have a lower latency of key delivery than WKA-BKR. Based on these observations, we propose a hybrid
scheme, called WFEC-BKR, which is a combination of weighted FEC and BKR.

In WFEC-BKR, the key server first packs the encrypted keys intosp packets ofsk keys, and then divides the
packets intosb blocks ofk packets. The key server then chooses an appropriateρ and generatesd(ρ − 1)ke parity
packets for each block, based on the analysis in Section 3.2. Finally, it broadcasts all the packets. In the retransmission
phase, a user that has not received its key reports the missing key. The key server collects all the retransmission
requests, repackages the requested keys into new packets, and then broadcasts these packets. This process is repeated
until all users have received their keys successfully.

3.2 Determining The Proactivity Factorρ

We note that, unlike the proactive FEC-based protocol discussed in [10], in our protocol the proactivity factor for
different FEC blocks will typically be different depending upon the number of users interested in the keys in a particular
block as well as the estimated packet loss rates of these users.

Now we consider the issue of selecting an appropriate proactivity factorρ for each FEC block. Clearly, increasing
ρ results in reduced latency at the expense of increased bandwidth overhead. We now sketch an approach that can be
used to determine theρ for each block, based on the number of users interested in the keys in each block and the loss
probabilities of these users (a user can estimate its packet loss rate and piggyback this information in the NACK it

4

sends to the key server.). Thus, we can use this approach to obtain a reasonable initial set of parameters (ρ andk) that
can balance the bandwidth overhead with the key delivery latency.

Consider a userui with a loss probabilitypi. Recall that each user is interested in exactly one key (sayK) out of
the keys transmitted by the key server. Letρx be the proactivity factor for the FEC blockBx that containsK and let
k denote the FEC block size. LetLx = dkρxe. The probability thatui receives the packet that containsK is 1 − pi.
In the event it does not receive the packet that containsK, it is still able to reconstruct that packet if it receives at least
anyk other packets out of theLx packets in the FEC block. Therefore, the probabilityp(x, i) that it will receiveK in
the first round of transmission is

p(x, i) = (1 − pi) + pi(
Lx−1∑
j=k

(
Lx − 1

j

)
(1 − pi)

j(pLx−j−1
i)). (1)

Using this approach, the key server can compute the probabilitiesp(x, i) for all the usersui interested in the keyK.
By repeating this process for all the keys in a block, adding together all the probabilitiesp(x, j), whereuj is a user
interested in one of the keys in the blockBx, and dividing the sum of the probabilities by the total number of users
interested in the keys in the block, we can obtain the expected value offx, the fraction of users interested in the keys
in blockBx that will receive their keys in the first round of the key delivery protocol.

3.3 Performance Evaluation

Metrics and Simulation Model In this section, we evaluate the performance of WFEC-BKR scheme by comparing
it to that of the proactive FEC and the WKA-BKR schemes. We use two metrics in this evaluation: (i) theaverage
bandwidth overheadat the key server, defined as the ratio of the total bandwidth (including the bandwidth of the
original rekey payload and the replicated and the retransmitted packets) to the bandwidth of the original rekey payload,
and (ii) thefraction of members who successfully receive the group key in the first (transmission) roundof the key
delivery protocol. The second metric reflects the latency of group rekeying.

The results are obtained via simulation using a heterogeneous network packet loss model in which a fraction
α = 20% of the receivers have a high packet loss probabilityph = 0.2, whereas the remaining receivers have a low
packet loss probabilitypl = 0.02. The packet loss a user experiences is assumed to be independent. We examine the
performance of the schemes using the following group characteristics. The key server constructs a binary key tree of
height13, knowing that the maximum number of users who join the group over the lifetime of the application will
not exceed213 = 8092. Initially, we assume that there are5000 users in the group. At each rekeying event, the group
membership of 100 (randomly selected) users is revoked and 100 new users join the group.

We use the method of independent replications for our simulations and all our results have 95% confidence intervals
that are within 1% of the reported value. In our discussion below, we use FEC(x) to denote the proactive FEC based
key delivery protocol [10] with pro-activity factorx, and WFEC(x)-BKR to denote the hybrid scheme which uses
pro-activity factorx for the first round transmission and then uses BKR for retransmission.

Results

Bandwidth OverheadFig. 3 plots the rekeying bandwidth overhead (y-axis) of the schemes for30 consecutive
rekeying events (x-axis). We can make the following observations from this figure. First, overall, the hybrid scheme
WFEC(1.2)-BKR has the smallest bandwidth overhead, whereas FEC(1.2) has the second largest bandwidth over-
head (only slightly lower than FEC(1.6)). The difference between WFEC(1.2)-BKR and FEC(1.2) is significant. Since
WFEC(1.2)-BKR and FEC(1.2) have the same bandwidth overhead for replication in the first round of transmission,
the difference indicates that batched key retransmission is more efficient than retransmitting the maximum number of
required parity packets for each block. Note that WFEC(1.6)-BKR outperforms FEC(1.6) due to the same reason.

Second, the WKA-BKR scheme has a high bandwidth overhead at the beginning of the simulation, but the overhead
decreases with each rekeying event. In stateful protocols such as LKH, the bandwidth overhead of WKA-BKR and
FEC is mainly a function of the group size and the number of joins and leaves being processed as a batch [10, 7].
Since each rekeying event in our simulation has the same number of member joins and leaves, we would not expect
there to be much variation in the bandwidth overhead for different rekeying events for LKH. In contrast, for SDR the

5

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Group Rekeying

Th
e

R
ek

ey
in

g
Ba

nd
w

id
th

 O
ve

rh
ea

d
WKA−BKR
FEC(1.2)
WFEC(1.2)−BKR
FEC(1.6)
WFEC(1.6)−BKR

Fig. 3. Key server bandwidth overhead for different rekeying
events.

0 5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

Group Rekeying

Th
e

Fr
ac

tio
n

of
 U

se
rs

WKA−BKR
FEC(1.2)
WFEC(1.2)−BKR
FEC(1.6)
WFEC(1.6)−BKR

Fig. 4.The fraction of members who receive their keys in the first
round.

bandwidth overhead of WKA-BKR depends upon the sizes of the subsets in the subset cover. The composition of the
subset cover tends to change over time. For example, the subset to which a user belongs is split when another user
from the same subset is revoked and this results in two smaller subsets. As more users leave the group, most subsets
become very small; as a result, their replication weights under WKA-BKR are also reduced, leading to a lower overall
bandwidth overhead.

Third, the curves for FEC fluctuate at some rekeying points while the curve for WKA-BKR is very smooth. This
fluctuation arises from the use of different FEC block sizesk for different rekeying events in order to minimize the
overhead of packet padding.

Latency In Fig. 4 we plot the fraction (fr) of users who receive the group key in the first (transmission) round of the
key delivery protocol for 30 consecutive rekey events. We observe that FEC(1.2) and WFEC(1.2)-BKR have the same
latency as do FEC(1.6) and WFEC(1.6)-BKR. However,fr is larger than 0.99 for FEC(1.6) and WFEC(1.6)-BKR,
whereas it is around 0.97 for FEC(1.2) and WFEC(1.2)-BKR. This is not surprising since the degree of redundancy in
FEC(1.6) is larger than that in FEC(1.2). For WKA-BKR,fr decreases over time since the replication weights used
by the WKA algorithm tend to be reduced as discussed above.

Overall, from Figures 3 and 4, we can conclude that WFEC-BKR has low bandwidth overhead (comparable to that
of WKA-BKR), and relatively low latency (comparable to that of proactive FEC-based key delivery).

4 Self-Healing Key Delivery for SDR

The reliable key delivery protocols discussed in Section 3 work well for scenarios where a user experiences random
packet losses. However, a user might have to request multiple packet retransmissions until it finally receives the
encrypted key of interest to it. There is no guarantee that it will receive the group key before the next group rekeying
event. This is especially true for users that are experiencing intermittent burst packet losses. Another similar scenario
arises when a user is off-line (while still a member of the group) at the time of group rekeying. If the user receives data
that was encrypted using a group key that it has not received, it will need to obtain that group key.

A self-healing key delivery protocol allows a user to obtain missing group keys on its own without requesting
a retransmission from the key server. This is accomplished by combining information from the current key update
broadcast with information received in previous key update broadcasts. In this section, we will discuss two schemes
that add the self-healing property to SDR. We say a scheme hasm-recoverabilityif the maximum number of previous
group keys a legitimate user can recover ism.

4.1 Scheme I: The Basic Scheme

Figure 5 shows a sequence of rekeying events. LetT (i) be the current rekeying time, andK(i) is the new group
key to be distributed. A simple approach that enables a current member to recover the previousm group keys, i.e.,

6

K(i−m), K(i−m+1), ..., K(i−2), K(i−1), is to encrypt thesem keys with the current group keyK(i) individually
and broadcast them to the group. Hence, as long as a user receivesK(i) reliably (e.g., through WFEC-BKR), it will
be able to recover the previousm keys. However, this approach does not enforcebackward confidentiality[9], because
a newly joined user can also recover these keys.

T(i)T(i-m+2)T(i-m+1)T(i-m) T(i-3) T(i-2) T(i-1) T(i+1)T(i-m-1)

K(i+1)K(i)K(i-1)K(i-2)K(i-3)K(i-m+2)K(i-m+1)K(i-m)K(i-m-1)

m

Fig. 5. Recovering the previous group keys, hereT (i) is the current rekey time.

To solve this problem, it is important to bind the time at which user joined the group with its ability to recover a
previous group key. In other words, a user should only allowed to recover the group keys that were used after it joined
the group. To achieve this goal, in our scheme the key server encrypts each group key,K(i− j), 1 ≤ j ≤ m with a key
that is derived by XORing the current group keyK(i) with the group keyK(j − 1). Thus, the key server broadcasts
m encrypted keys as follows:

KeyServer −→ ∗ : {K(i − m)}K(i−m−1)⊕K(i), {K(i − m + 1)}K(i−m)⊕K(i), ...,

{K(i − 1)}K(i−2)⊕K(i),

where⊕ is the XOR operation and{K2}K1 means encrypting keyK2 with keyK1. A user that joined the group at
timeT (j), i − m < j < i, and receivedK(j) can recover all the keys betweenK(j) andK(i) after it receivesK(i).
A newly joined user, i.e., a user joining atT (i), cannot recover the previous keys because it does not hold any previous
keys. On the other hand, a user that was off-line for more thanm rekeying periods cannot recover these previous keys.
The communication cost ism keys for this basic scheme.

However, there are two scenarios where the security of this scheme may be compromised. The first scenario arises
when a revoked user joins the group again some time in the future. For instance, a user that left the group atT (j),
i−m < j < i, and rejoins atT (i) will be able to recover all the keys betweenK(j) andK(i) based onK(j − 1) and
K(i). A similar scenario arises when a user that has left the group or whose membership was revoked colludes with a
newly joined user. In the above example, a user whose membership was revoked at timeT (j) and has the keyK(j−1)
could collude with a newly joined user who hasK(i) to recover the intermediate keys that they are not authorized to
have.

4.2 Scheme II: Dealing with the Rejoining/Colluding Attack

We now propose an extension to the basic scheme that addresses the rejoining/colluding attack described above. The
key idea is to bind the ability of a user to recover a previous group key not only to the time at which it became a
member but also to its membership duration. The scheme involves the following steps.

1. In each group rekeying, the key server generates a key chain of sizem+1. Let the keys in the key chain generated
for the rekeying atT (i) beKm(i), Km−1(i), ..., K1(i), K0(i), whereK0(i) = H(K1(i)) = H2(K2(i)) = ... =
Hm(Km(i)) andH is a one-way hash function such as SHA-1. Due to the one-wayness of the hash function, a
user knowingKj(i) can compute all the keysKj−1(i), ..., K0(i) independently, but it cannot compute any of the
keysKj+1(i), ..., Km(i). K0(i) is the group key that all the users should use for data encryption betweenT (i)
andT (i + 1).

2. The users in the group are considered to be partitioned intom + 1 subgroups, depending upon their membership
duration. Each subgroup is associated with a separate key from the one-way key chain generated in the first step.
Specifically,Kj(i) is the key intended for the members that joined the group atT (i − j) for 0 ≤ j < m, and
Km(i) is the key intended for members that joined at or beforeT (i−m). The algorithm used for key distribution
is discussed in more detail later in this section.

7

3. The key server broadcastsm encrypted keys as shown below:

KeyServer −→ ∗ : {K0(i − m)}K0(i−m−1)⊕Km(i), ...,

{K0(i − 2)}K0(i−3)⊕K2(i), {K0(i − 1)}K0(i−2)⊕K1(i).

From step 3, we can see clearly that the ability of a user to recover previous group keys depends on its membership
duration. For a new user that only receivesK0(i), it cannot contribute any keys to help any users whose membership
was revoked earlier to recover the previous group keys. For a current member that has been in the group for at leastm
rekeying periods, it can generate all the keys in the key chain after it receivesKm(i); hence it can recover all them
group keys if it hasK0(i−m− 1). For a current member that joined atT (j), i−m < j < i, it will receiveKi−j(i),
which enables it to recover at most the keys betweenK0(j) andK0(i) even when it colludes with the early revoked
nodes. But this is not an additional security leak, because the user is authorized to have these keys. Thus, this scheme
is secure to the rejoining/colluding attack that appears in Scheme I.
An Example In Fig. 6 we show an example to illustrate scheme II. LetT (10) be the current rekeying time andm = 5.
Following the algorithm above, the key server first generates a random keyK5(10), based on which it generates a hash
key chainK5(10), K4(10), ..., K1(10), K0(10). The current members of the group are considered to be divided into
m + 1 = 6 subgroups depending upon their membership duration. The key sent to newly joined members isK0(10),
while the keys sent to the remaining members are as follows:K1(10) is sent to the users that joined atT (9), K2(10)
is sent to the users that joined atT (8), K3(10) is sent to the users that joined atT (7), K4(10) joined atT (6), and
K5(10) to all the users that joined at or beforeT (5). Finally it broadcasts

KeyServer −→ ∗ : {K0(5)}K0(4)⊕K5(10), {K0(6)}K0(5)⊕K4(10), ...,

{K0(8)}K0(7)⊕K2(10), {K0(9)}K0(8)⊕K1(10).

K(13)K(12)K(11)K(10)K(9)K(8)K(7)K(6)K(5)K(4)

m = 5

T(5) T(6) T(7) T(8) T(9) T(10) T(11)

Fig. 6. An example illustrating Scheme II. HereT (10) is the current rekey time.

The Key Distribution AlgorithmTo evaluate the communication complexity of this scheme, we first discuss the key
distribution algorithm that distributes the keys in the key chain to users of different membership durations in step2 of
the scheme. A simple approach for this is to deliverKm(i) to the current users that joined at or beforeT (i−m) using
the SDR method, while delivering all the keysKj(i), m < j ≤ 0, to the users that joined atT (i− j) through unicast,
encrypted individually with the leaf keys corresponding to these users. LetN(i) denote the number of users that join
the group betweenT (i− 1) andT (i), then the communication complexity of this scheme is

∑i
j=i−m N(j). Thus, the

scalability of this approach depends on the arrival rate of the system. Below we present another algorithm that has the
communication complexity ofO(m).

In SDR, users are mapped into the leaves of the key tree from the left to the right in the same order as their joining
times. Hence, all theN(i) users that join betweenT (i− 1) andT (i) and are added into the key tree atT (i) as a batch
occupyN(i) consecutive leaves of the key tree. Naturally, they form one or more subsets in the SDR algorithm. The
key server uses the following process to determine the number of subsets for theseN(i) users:

1. Identifies the minimal full subtreeS(i) that covers all theseN(i) users. Clearly, the root of this subtree is the least
common ancestor of these users.

2. Marks all the leaves inS(i) which are not mapped to any of theseN(i) users as revoked.

8

3. Runs the SDR algorithm to determine the number of subsets forS(i).

The key server maintains a main key tree that corresponds to all the users that joined at leastm rekeying periods ago,
andm subtrees that correspond to the other users that joined at different rekeying periods. From themth rekeying on,
in every rekeying the key server merges the subtree that corresponds to the users whose membership durations just
exceededm rekeying periods into the main key tree.

As in the original SDR algorithm, the number of subsets in this algorithm increases when users join and leave. The
communication complexity of our approach depends upon how manyadditionalsubsetsNa our algorithm introduces
compared to the original SDR algorithm. The value ofNa depends on the group size, the number of arrivals and
the number of revoked users in each rekeying period, and the value ofm. We studied this issue through extensive
simulations. We found that in most casesNa is smaller thanm, whereas in other cases it lies betweenm and2m.
Although we do not have an analytical proof for this conclusion, our simulations strongly indicate that the number
of additional subsets is less than2m. Thus, taking into account them keys broadcast in step 3 of our scheme, we
conclude that we can add the self-healing property to SDR at the expense of transmitting at most3m additional keys.

5 Conclusions

In this paper, we studied two important issues related to the subset difference rekeying method. First, we presented a
hybrid key distribution scheme, called WFEC-BKR, that combines the advantages of the proactive FEC and WKA-
BKR key delivery protocols. Through simulation, we show that WFEC-BKR has low latency as well as low bandwidth
overhead. Second, we present a recovery scheme that adds the self-healing property to SDR with very small additional
communication overhead.

References

1. D. Balenson, D. McGrew, and A. Sherman. Key Management for Large Dynamic Groups: One-Way Function Trees and
Amortized Initialization. IETF Internet draft (work in progress), August 2000.

2. B. Briscoe. MARKS: Zero Side Effect Multicast Key Management Using Arbitrarily Revealed Key Sequences. In Proc. of
First International Workshop on Networked Group Communication, NGC 1999.

3. W.Chen and L.Dondeti. Performance comparison of stateful and stateless group rekeying algorithms. In Proc. of Fourth
International Workshop on Networked Group Communication, NGC 2002.

4. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers. In Advances in Cryptology -
CRYPTO 2001. Springer-Verlag Inc. LNCS 2139, 2001, 41-62.

5. S. Setia, S. Koussih, S. Jajodia. Kronos: A Scalable Group Re-Keying Approach for Secure Multicast. In Proc. of the IEEE
Symposium on Security and Privacy, Oakland CA, May 2000.

6. J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin and D. Dean. Self-Healing Key Distribution with Revocation. In
Proc. of the IEEE Symposium on Security and Privacy, oakland, CA, May 2002.

7. S. Setia, S. Zhu and S. Jajodia. A Comparative Performance Analysis of Reliable Group Rekey Transport Protocols for Secure
Multicast. In Performance Evaluation 49(1/4): 21-41 (2002), special issue Proceedings of Performance 2002, Rome, Italy, Sept
2002.

8. C. Wong, M. Gouda, S. Lam. Secure Group Communication Using Key Graphs. In Proc. of SIGCOMM 1998, Vancouver,
British Columbia, 68-79.

9. D. Wallner, E. Harder and R. Agee. Key Management for Multicast: Issues and Architecture. Internet Draft, draft-wallner-key-
arch-01.txt, September 1998.

10. Y. Yang, X. Li, X. Zhang and S. Lam. Reliable group rekeying: Design and Performance Analysis. In Proc. of ACM SIGCOMM
2001, San Diego, CA, USA, August 2001, 27-38.

11. S. Zhu, S. Setia, and S. Jajodia. Performance Optimizations for Group Key Management Schemes. In Proc. of the 23rd IEEE
ICDCS 2003, Providence, RI, May 2003.

9

