Wormhole Attacks in Wireless Networks

Yiu-Chun Hu, Adrian Perrig and David Johnson

CS818 Presentation By Venkatesh Ramanathan

- Wormhole 'Shortcut' through space and time (Source: wikipedia)
- Origin Worm burrows through the center of apple instead of traveling the whole distance to get to other side

Introduction

- Wormhole attack Record packet/bits at one location and tunnel to another location.
- Packet Leashes To detect wormhole attacks
 - Geographic Leashes and Temporal Leashes
 - Authentication Protocol, TIK, for temporal leashes
- Topology based detection unable to detect wormhole

Introduction

- Tunneled packets arrive with better metric
 - Use wired link, Long range wireless link
- Attacker Can
 - forward each bit instead of waiting for the whole packet.
 - Can create wormhole for packets not addressed to self.
 - Can be performed even when communication has confidentiality/authenticity (no crypto keys required)
 - Invisible at higher layers

Introduction

- Dangerous against ad hoc network routing protocols (DSR, AODV)
 - Tunnel RREQ directly to destination node
 - Destination re-broadcasts copy of RREQ and discard all other RREQ
 - Prevents discovery of routes other than through wormhole
 - Attacker could then drop all data packets (DoS)

Introduction

- OLSR and TBRPF (neighbor discovery protocols)
 - Colluding attackers near nodes A & B wormhole HELLO packets. A & B would believe they are neighbors.
- DSDV
 - If route advertisement is tunneled and A & B not within wireless range, would unable to communicate

Scope

- TIK supports unidirectional and bidirectional wireless links
- Did not consider attacks at physical layer, DoS attacks at MAC layer
- Adversary can place nodes anywhere in the network.
 Communication between malicious nodes unobservable.
- Using symmetric cryptography as nodes may be resource constrained.
- TIK protocol uses symmetric key cryptography.

Detecting Wormhole Attacks

- Packet Leash to detect and defend wormhole attacks
- Leash
 - Information added to packet to restrict packet's maximum allowed distance.
 - Designed to protect against wormhole attacks over single hop. Transmission over multiple hops require fresh leash.
- Types:
 - Geographic Leash Ensure recipient within some distance.
 - Temporal Leash Upper bound on packet lifetime.

Geographic Leash

- Each node must know its location
- Nodes have loose time synchronization
- $d_{sr} \le ||p_s p_r|| + 2 v (t_r t_s + \Delta) + \delta$
 - d_{sr} upper bound on the distance between sender and reciever
 - p_s, p_r localtions
 - v maximum velocity of node
 - Δ Time synchronization error
 - δ maximum error in location
- Geographic leash can be used to catch an attacker if pretending to be in more than 1 location. (node velocity > maximum node velocity)

Temporal Leash

- Nodes must have 'tightly synchronized clocks':
 - maximum difference delta
 - Delta known to all nodes
 - Order of microseconds or hundreds of nano seconds
- Supported hardware
 - LORAN-C Long Range Navigation Aids
 - WWVB (NIST time signal) Used by radio controlled clocks throughout North America
 - GPS, Atomic clocks
- Sender includes time, ts. Receiver computes ts x speed of light and compares with tr. Alternatively, sender includes packet expiration time.
- Digital signature or other authentication scheme to verify timestamps.

Temporal Leashes and TIK

- Sender sets packet expiration time
 - tc = ts + $L/c \Delta$
 - ts local time of sender
 - c speed of signal
 - Delta time synchronization error
- Receiver checks tr < tc</p>
- Assumes no delay in sending/receiving packets

Merkle Hash Tree – Mechanism for authenticating keys in TIK

- Values v_o, .. v_{w-1} are placed at leaf nodes
- Compute $v_i' = H(v_i)$
- Internal node m₀₁ = H (v_o'||v₁)
- Root value (m₀₇) used to authenticate all leaf values.
- To authenticate v₂, sender discloses v₃', m₀₁, and m₄₇
- Receiver computes:
- H[H[m₀₁||H[H[v₂] || v₃']] || m₄₇]

Hash Tree Optimization

- Depth of the tree could be quite large (Not practical for storage)
 - log₂ [t/I]; I interval, t-time between rekeying
 - Solution: Store upper layers and compute lower layers on demand.
 - Reconstructing tree requires 2^{d-1} PRF and 2^d − 1 application of hash functions.

Hash Tree Optimization

- Number of operations:
 - 2^{D-1} PRF + 2^D 1 Hash
 (D depth of the tree)
- To choose, d, depth of the tree for on-demand, minimize total storage:
 - $d^* = D/2$
 - Storage:
 - Tree depth of 34 requires
 2.5MB to store

$$\frac{\partial}{\partial d}(2^{D-d+1} - 1 + 2^{d+1} - 2) = 0$$

 $(-\ln 2)2^{D-d+1} + (\ln 2)2^{d+1} = 0$
 $2^{d+1} = 2^{D-d+1}$
 $d+1 = D-d+1$

 $2^{\lceil D/2 \rceil + 1} + 2^{\lfloor D/2 \rfloor + 1} - 3$

TIK (TESLA with Instant Key Disclosure) Protocol

- Packet Transmission Time >> Time Synchronization Error
- Receiver verifies TESLA security condition (corresponding key has not yet been disclosed) as it receives the packet allowing sender to disclose the key in the same packet.
- TIK implements temporal leash
- TIK requires time synchronization between nodes

Sender Setup

 ${\mathcal F}\,$: pseudo-random function ${\mathcal X}\,$: secret master key

I : expire interval

- Sender uses PRF and master key to derive series of keys Ko, ...Kw
- Computationally infeasible for attacker to find master key even if all keys are known (assuming PRF is secure)
- Without master key, attacker could not derive K_i that sender has not disclosed

- Sender picks key expiration interval I.
 - Key K_o expires at time T_o, K₁ at T_o+I,...
- Sender constructs merkle hash tree to commit to keys K₀,...K_{w-1}

- Receiver Bootstrapping
 - Assumes all nodes have synchronized clocks with max error Δ .
 - Receiver knows every senders hash tree root, T_o (key expiration time) and I

TIK – Sending and verifying authenticated packets

- Senders estimates upper bound on the arrival time of HMAC
- Sender picks key K_i that will not expire when receiver gets HMAC
- Sender attaches HMAC to packet computed using K_i
- Sender discloses K_i and tree authentication values.

TIK – Sending and verifying authenticated packets

- Receiver verifies that K_i was used to compute authentication.
 - Packet originated from claimed sender.
- TIK eliminates the need for delayed authentication by disclosing key in the same packet.
- Attacker who re-transmits the packet will incur further delay. Receiver thus rejects the packet.

Evaluation

- Computation Power
 - Optimized MD5 hashing (1.3 mill hashes per sec on Pentium III, 222,000 in iPAQ)
- Storage
 - 2.6MB for hash tree storage.
- TIK would need 18% CPU on iPAQ for authentication.
- TIK is not feasible for sensor networks.

Security Analysis

- Packet leashes ensures that attacker is not causing signal to propagate father than specified distance.
- Does not account for the following:
 - Malicious receiver refuse to check the leash
 - Refuse to check authentication
 - Could tunnel packets to another attacker
 - Nodes can claim false time stamp/location.

Geographic Vs Temporal Leashes

- Geographic
 - Can be used with radio propagation model to detect tunnels through obstacles.
 - No tight time synchronization.
 - $d_{sr} \le ||p_s p_r|| + 2V. (t_r t_s + \Delta) + \delta$
 - Use when $\delta < c \Delta$
- Temporal
 - When used with TIK, less network and computational overhead.
 - $d_{sr} \leq c. (t_r t_s + \Delta)$
 - Use when $\delta >= c \Delta$

Related Work

Topology-Based
 Approach – Build a model of topology from distance measurements
 between nodes.

Related Work

- Directional antennas for detecting wormhole attacks using correctly positioned verifier (Hu & Evans).
- Open, Half-Open and Closed worm holes (Wang, et. al.)
 - Open no higher layer
 - Half-open one end at higher layer
 - Closed higher layer
- Radio Frequency Water Marking (authenticates wireless transmission by modulating RF wave form)
- TESLA & TIK
 - TESLA requires looser time synchronization where as TIK better for hop-by-hop authentication (TIK key disclosure along with packet)

Conclusions

- Wormhole attack that exploits routing protocols in ad hoc networks was introduced.
- Presented Packet Leashes (Geographic & Temporal Leashes) to defend against such attacks.
- Presented TIK protocol to authenticate packets received.
 - TIK requires n public keys
 - Node requires 3 6 hash function evaluations per interval and 30 evaluations per packet.
 - Less than 3% memory use and 18% CPU use.
 - TIK prevents attacks that cause signal to travel distances longer than radio range

Comments

- Wormhole attack different form of man in the middle attack
- Geographic Leash Did not include processing delay, speed of the signal, lower bound on distance
- Temporal leash TTL
- Network overhead.
- Weak evaluation.
- No experiments.