Privacy and Security in library RFID

Issues, Practices and Architecture

David Molnar and David Wagner University of California, Berkeley

CCS '04 October 2004

Overview

- Motivation
- RFID Background
- Library RFID Issues
 - Current Architectures, Attacks
- Private Library RFID Architecture
 - Private Collision Avoidance
 - Private Authentication
- Related Work, and Conclusions

Tagging

- RFID Tag Small low cost device, limited data capacity
- Driving force
 - Logistics and supply chain applications
 - Proximity cards
 - Pet tracking
- Tagging pallets vs. Item level tagging
- Library RFID applications
 - Privacy implications in a concrete real-world setting

RFID Background

- Passive tags are powered only within range of a reader
 - Limited computation time
 - Out-of-range precomputation is impossible
- Extremely few gates (500-5000)
 - AES, #functions (SHA1) or pseudo-random functions
 - Simple password comparisons and XOR operations
- No physical security
- Economic pressure to manufacture 'inexpensive' tags

Library RFID Tags

Tag Type	Example Library	Example Vendors
Checkpoint WORM	Santa Clara City	Checkpoint
Checkpoint writeable	None	Checkpoint
TAGSYS C220-FOLIO	U. Delaware	VTLS, TechLogic
ISO 15693/18000-3 MODE 1	National U. Singapore	3M, Bibliotheca, Libramation
ISO 18000-3 MODE 2	Not yet available	Coming soon
EPC Class 1 13.56MHz	Not for library	WalMart
EPC Class 0 915MHz	Not for library	WalMart
EPC Class 1 915MHz	Not for library	WalMart

ISO 15693-3 and 18000-3 Mode 1 compliant (3M Library solutions)

- MODE-2 Tags (not currently offered)
 - High speed data transfer and communications
 - Random number generator, semi-nonvolatile RAM
- EPC (915 MHz) vs. Library RFID (13.56 MHz) tags

More data on Tags

- No strict regulation
- Interaction distance 8 to 24 inches
 - Regulated by limitations on reader power and antenna size
 - Illegal readers?
- Eavesdropping possibilities
 - Asymmetry in signal strength
- Use of collision avoidance ID to track tags

Library RFID Architecture

- Limited scope for updating the system
- What's on the Tag?
 - Bar Code (from the bibliographic database)
 - Shelf location, last checked out date, author, title, etc
- How exit sensors work
 - Use of a security bit (needs to be set correctly)
 - Query database with Tag information (latency)
- Adversaries can track reading habits without the database!

Attacks on current RFID architectures

- Adversary characteristics
 - Access to a reader, no access to the bibliographic database
 - Power to perform passive eavesdropping and active attacks
- Static tag data, no access control
- Collision avoidance Ids
- Write locks, race conditions, Security Bit DoS Attacks
- Tag password management

Static Tag Data, without Access Control

- ID of tag remains constant throughout lifetime
- No read passwords or access control
- Privacy concerns
 - Profiling
- Tracking, in conjunction with other types of surveillance
- Hotlisting
 - Target marketing
 - Anecdotal evidence of hotlisting in practice

- Globally unique and static collision ID
 - ISO 18000-3 Mode 1 64 bit MFR Tag ID,
 - Support inventory command with no access control
 - Slotted and non slotted collision avoidance
 - EPC Class 1 13.56 MHz use EPC identifier
 - ISO 18000-3 Mode 2 64 bit MFR id

- Globally unique seed for PRNG may be derived from the MFR ID

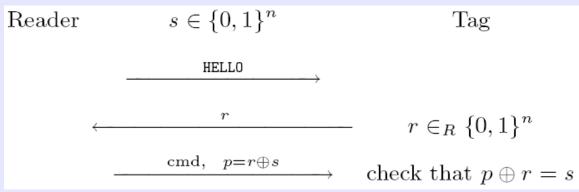
- EPC 915 MHz tags - Three collision avoidance modes

- Adversarial reader asks tag to use the EPC ID

RFID hardware is incompatible with privacy concerns?

Security Bit DoS attack

- Vandalism of RFID tags
- Unprotected write commands, protected lock commands
 - No unlock command (EPC, ISO 18000-3 Mode1 / Mode2)
 - Consistent only with supply chain requirements
- Set security bit to desired value, and lock the tag!
- Write unique id in unlocked portion of the tag for tracking
- Adaptations
 - TAGSYS C220 special area of memory for security bit
 - Checkpoint Database lookup


Security Bit DoS (2)

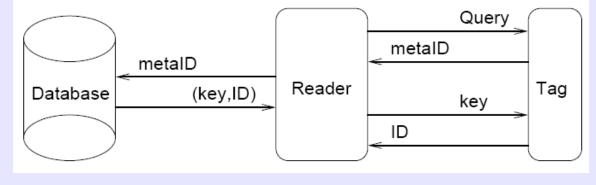
- Support lock/unlock/write commands
 - Hash locks
 - possibility of session hijacking
 - Bypass write lock by racing a legitimate reader
- Tags left unlocked by accident?
- Command sequences that force restarting collision avoidance

- Static passwords sent in the clear from the reader
- Single password per site open to compromise
 - Write passwords required at checkout
- Different passwords per tag
 - Mapping tags to passwords?
 - Need to reconcile privacy and prudent password management

Tags with Private Collision Avoidance

- Random transaction Ids on Rewritable tags
 - Allows tracking, but not hotlisting
- Improved passwords via persistent state
 - Harder to eavesdrop on the tag to reader channel

- How to generate the nonce?



- RFID Authentication scheme as a triplet of (Generator, Reader and Tag) probabilistic polynomial time algorithms
 - G(1k) generator for TK, RK
 - Interaction between the algorithms T(TK) and R(RK)
- Privacy
 - Adversary unable to distinguish tags with different secrets
- Secure
 - Adversary needs secret key for interaction with tag/reader
- Performance scalability

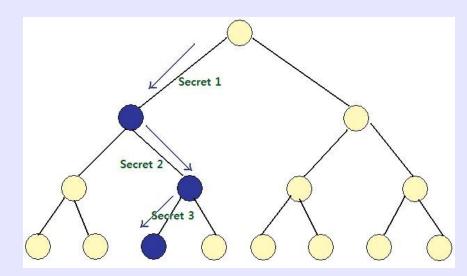
Lock Protocol (Weis et. al.)

- Set up: Tags are given a unique (s, ID) pair

- Tag to reader (r, f(r), ID)
- Reader
 - Finds an ID consistent with the message
 - Send ID to Tag
- Use of backward channel
 - One time pads
- Chaff commands

Basic PRF private authentcation

Reader		$s \in \{0,1\}^n$	Tag
$r_1 \in_R \{0, 1\}^n$		$\xrightarrow{\text{HELLO}, r_1}$	
find $(s, ID) \in D$ s.t. $ID = \sigma \oplus f_s(0, r_1, r_2)$	~	$r_{2}, \ \sigma {=} ID {\oplus} f_{s} \left(0, r_{1}, r_{2} \right)$	$r_2 \in_R \{0,1\}^n$
$ID = 0 \oplus f_{s}(0, r_{1}, r_{2})$		$\tau = ID \oplus f_s(1, r_1, r_2) \longrightarrow$	check that $ID = \tau \oplus f_s(1, r_1, r_2)$


•
$$(G_{\text{basic}}, R_{\text{basic}}, T_{\text{basic}})$$

• Reader workload linear in proportion to number of tags

Tree based Private Authentication

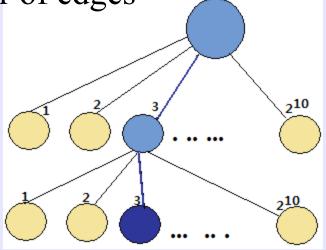
- O(n lg n) reader work, tag storage, interaction rounds
 - Assumption existence of a basic scheme

- Modifications:
 - Larger branching factors
 - XOR scheme instead of PRF
 - Perform all levels in parallel

Unoptimized algorithm (2)

Algorithm 4.1: $G_{\text{TREE}}(1^k, N)$			
Fix $\ell \leftarrow \log N$			
for $i = 1$ to ℓ			
for $j = 0$ to 1			
$s_{i,j} \leftarrow G_1(1^k)$			
for $h = 1$ to N			
Parse h in binary as (b_1, \ldots, b_ℓ)			
$TK_h \leftarrow (s_{1,b_1}, \dots s_{\ell,b_\ell})$			
$RK \leftarrow (s_{1,0}, s_{1,1}, \ldots, s_{\ell,1})$			
Output RK , TK_1, \ldots, TK_N .			

S[1,0]	001	h : 1 to N	TK[h]		
S[1,1]	110	000	001	101	111
S[2,0]	101	001	001	101	001
S[2,1]	110	010	001	110	111
S[3,0]	111	011	001	110	001
S[3,1]	001	100	110	101	111
		101	110	101	001
		110	110	110	111
N = 3	k = 3	111	110	110	001


.0'

Unoptimized Algorithm (2)

Algorithm 4.2: $(R_{\text{TREE}}, T_{\text{TREE}})$ (RK, TK)

Fix $\ell \leftarrow \log N$ Parse RK as $(u_{1,0}, u_{1,1}, \ldots, u_{\ell,1})$ Parse TK as (v_1, \ldots, v_ℓ) for i = 1 to ℓ SUCCEED \leftarrow false for j = 0 to 1 if running $(R_1(u_{i,j}), T_1(v_i))$ returns true then SUCCEED \leftarrow true if ¬SUCCEED then fail and output 0 accept and output 1

- A fixed security parameter k for all levels $\rightarrow O(k lg n)$
- Split into two phases to get communication O(k + lg n)
- Phase I Run tree scheme with a constant security parameter to identify the tag
 - Branching factor vs. Security parameter of edges

Related Work

- Blocker Tags not applicable in library settings
- Changing RFID Ids based on # chains
- Use of pseudonyms prevents hotlisting, not tracking
- Security through obscurity and proprietary protocols
- "Best Practices" for Library RFID

Contributions

- Survey libraries' usage of RFID deployment
 - Analysis of vulnerabilities in real world deployments
- Private authentication as a key technical challenge
- Privacy friendly symmetric key authentication
 - Authentication of reader vs. Tag identification

Other comments

- Utilizing the physical characteristics of passive tags
 - Spoofing
 - reject tag replies with anomalous response times or signal power levels
 - Session Hijacking
 - Frequency Hopping
 - Passive tags designed such that their operating frequency is completely dictated by the reader.

Other Reads

- Item-Level Tagging Gains Momentum Integrated Solutions Magazine, March 2008
- http://solutions.3m.com/wps/portal/3M/en_US/library/home/products/rfid_system/
- On the cryptographic applications of random functions (LNCS, 1985)
- Privacy aspects of low cost radio frequency identification systems (LNCS 2004)