4/1/08

Secure Sensor
Network Routing: A
Clean-Slate Approach

Bryan Parno, Mark Luk, Evan
Gaustad, and Adrian Perrig

Carnegie Melon University

o
Overview

m Design a highly secure, highly available
node-to-node sensor network routing
protocol

m Security Goals

Prevention
Detection and Recovery
Resilience

4/1/08

"
Assumptions

m Existence of a Network Authority (NA) which
provides each node with:
Kynas IDg, @nd {IDa} .
A one way hash chain of challenges
m Reliable broadcast mechanism to communicate

m Very little movement amongst sensor nodes

" S
Address and Routing Setup
Overview

m Goals:

Provide a unique network address to each
node that is based on network topology

Produce a routing table within each sensor
nodes that provides an accurate path to every
other node

Keep paths short and routing tables small

4/1/08

" D
Initialization

m Each node is its own group

m Each node performs a neighbor discovery

Uses signed certificates to prevent
adversaries from joining network

m Discovery phase is bound by time

" I
Recursive Grouping

m Group G requests to merge with its
smallest neighbor G’
If G is G’ smallest neighbor, G’ accepts
m All nodes in G and G’ compute their new
group ID, size, and merge table

m Each node appends an additional bit to its

address space to differentiate it from its
new group members

Example Grouping Outcome

O/\"
0 1 0/\1 0/\1 0 1

(b) Network Addresses

Prefix | Next hop
1* E (1.0.0)
0.1.% C (0.1.0)
0.0.1 B (0.0.1)
(a) Recursive Grouping Outcome (C) A’s ROlltillg Table

L 1L 1

"
Network Maintenance

m Node Death
Address space can remain unchanged

Node a requests alternative route from neighbors for

every entry in routing table that includes the dead
node

m Node Addition

Requires rerunning recursive grouping algorithm

Additions must be infrequent due to grouping
algorithm overhead

4/1/08

4/1/08

g
Packet Forwarding

m Packets received are forwarded using the routing table
entry for the most significant address bit of the
destination that differs from the current nodes address

m Example:
Destination Node D = 0.1.0
Current Node N = 0.0.1

Outcome: Node N sends the packet to the node in its routing
table for prefix 0.1.*

Caveat: This next hop is not necessarily a member of group
0.1.*, but will always be a member of 0.*

" S
Resilient Forwarding

m Multi-path forwarding to achieve high availability
m Amends the routing table to include three next hop
options, {L,M,R}, to each group
Assumes a relatively dense network that results in receiving
notifications of paths to another group from at least 3 neighbors
m Sender can produce a random direction string to attempt
to avoid perceived problems
Example direction string = LMRLL

String must be as long as the number of physical hops to
destination, which is unknown by the sender (only knows logical
hops based on groups)

Random path may bypass problem node/region

4/1/08

Hash Trees

= v1=h(AlIB), Va = h(v,||v,), and V = h(V,||V,)
m VerifyLeaf: Sender, C, provides values C, D, v, and V, so receiver
can calculate: V = h(h(v4||h(C||D))||V,)

m VerifyTree: Uses a probabilistic approach to challenge C on the
validity of its hash tree values

" S
Grouping Verification Tree (GVT)

m Uses hash trees to prevent tampering with
the recursive grouping algorithm

m Leaf values are node IDs

m Internal nodes are group IDs and
calculated using hash function

m Each node maintains a merge table of
groups it has merged with and their size

4/1/08

g
GVT Verification during a merge

G’ announces its ID and size (IDg,|G'|) to G

Group G chooses one of its nodes as a challenger C

C selects challenge Cj and broadcasts it to nodes in G

Nodes in G verify C} is a correct challenge and edge nodes
forward C; to G’

Based on Cf, group G’ chooses a responder node

Responder sends its certificate and merge table to G

Nodes in G perform the VerifiTiee operation to authenticate
the GVT for G’

o R B

Do

" S
GVT Continued

m After completion of the recursive grouping
algorithm, all nodes know group id, V

m V can be used to authenticate any leaf
using VerifyLeaf and that leaf’s merge
table

m Prevents Node replication and Sybil
attacks

More Detection and Recovery

m Replication Detection Algorithm

Each node maintains a list of node IDs and addresses of its
neighbors

Algorithm can detect a neighboring node claiming multiple
addresses since it cannot fake its ID

m Honeybee Algorithm
If a legitimate node detects a malicious node, it broadcasts the
implication
All other nodes immediately remove both the suspected
malicious node and the detecting node from the network
Models a honeybee stinging an adversary, thus sacrificing itself

Prevents malicious nodes from removing more than 1 legitimate
node from network

In a dense network, impact of losing 1 additional sensor node is
minimal

" S
Correctness Analysis

m Produces unique addresses to every node

m Produces deterministic routing between every
pair of nodes

m Open issues:

How does the resilient forwarding handle sparse
networks without 3 next hop options?

With the honeybee algorithm, how do nodes know
which legitimate node to remove from the network
when multiple nodes detect and implicate a malicious
node?

How long do one-way hash chains last and is there a
method for the NA to distribute new chains?

Protocol relies highly on reliable packet delivery

4/1/08

4/1/08

" I
Performance Analysis

m Recursive grouping algorithm is logarithmic with
respect to number of nodes

m Size of routing table, merge table, and address
are logarithmic
m Open issues:

Performance impact of implementing reliable
message delivery

Quantifying processing time and power consumption

g
Security Analysis

m Sybil nodes cannot enter the network due to the
secure neighbor discovery process

m Malicious nodes can only successfully slander 1
node because of the honeybee technique

m WWormholes and other malicious nodes can be
mitigated using the resilient routing technique

m Open issues:

A calculated slander attack with a small set of nodes
could cause the network to become disjoint if all
neighbors to a group were implicated

» S
Simulation

m Compared to Beacon-Vector Routing
(BVR) protocol

m Total Nodes: 100 and 500
m Nodes on average have 10 neighbors
m Tested with irregular topologies

" S
Simulation Results

m BVR requires less setup overhead

BVR Proposed
Protocol
Nodes 100 |500 |[100 |500
Avg Msg Sent 83 132 |139 | 252
Max Msg Sent 111 (201 [199 |[392

m BVR requires more routing overhead due to necessary flooding
when paths fail

m BVR is more adversely affected by voids in network topology

4/1/08

10

4/1/08

"
Implementation

m Used 16 Telos motes running TinyOS

m Code base was 21KB and routing data
was 50 bytes

m Network successfully routed 100% of
packets during a small test

Conclusions

Only suitable for sensor networks that require all sensors to have
the ability to communicate with all other sensors

Protocol needs to handle unreliable packet delivery

Relies heavily on nodes assuming all nodes in group are performing the
same operation

Relies on nodes assuming other nodes received its message/instruction
Performance needs to be further tested.
Time and processor cycles required for setup
How much power is consumed during initialization and node additions?
Performance of removing nodes from network
Further analysis
Can one-way key chains be re-established? What is the protocol?

Is the honeybee technique complete? What happens when multiple
nodes accuse a single node?

1

