
1

LEAP+: Efficient Security Mechanisms for
Large-Scale Distributed Sensor Networks

SENCUN ZHU
The Pennsylvania State University

and
SANJEEV SETIA and SUSHIL JAJODIA

George Mason University

Assumptions

 Sensors are not mobile
 Neighbor nodes are not known pre-

deployment – Ariel scattering possible
 Sensors are deployed in a hostile

environment
 Adversary can eavesdrop, inject packets, and

replay packets
 Adversary can gain physical access to sensors

 Base station will not be compromised

2

Limited Resources

 Assumed to have 100s of Bytes to store
keys

 Very limited power
 Example Implementation - Mica2 Motes

 7.8 Mhz processor
 4 KB RAM
 128 KB Non-volatile memory

Single Key Options

 Asymmetric Keys – Secure, but too
processor and memory intensive to be
practical.

 Shared Global Key – Most efficient
solution, but least secure.

 Shared Pairwise Key – Most secure
solution, but requires establishing and
maintaining too many keys.

3

Design Goals

 Support Unicast, Multicast, and
Broadcast Communications

 Support In-Network Processing (Data
Aggregation and Passive Participation)

 Survivability
 Energy Efficiency
 Avoid Message Fragmentation

LEAP+ Overview

 Individual Key
 Pairwise Key
 Cluster Key
 Global Key

4

Individual Key

 Each node has a shared secret key with
the base station

 Can be used to send private messages
to and from base station

 Preloaded before deployment
 IKu = fKm(u)

Pairwise Key

 Shared synchronous key shared with
each immediate neighbor

 Can’t be preloaded since neighbor will
not be known until after deployment

 Sensors can’t be made tamper proof,
but can be tamper resistant

5

Pairwise Key

 Tmin - minimum time required for an
adversary to compromise a sensor

 Test – time required for a newly
deployed node to discover its neighbors

 If Test < Tmin, then the newly deployed
node can safely maintain more sensitive
information for Test

Key Pre-distribution

 Controller generates a key KIN

 New sensors are loaded with KIN

 Each node u can derive a master key
Ku = fKIN(u)

6

Neighbor Discovery

 New Sensor sends HELLO:
u -> *: u.

 Existing neighbors send ACK:
v -> u: v,MAC(Kv, u|v)

 u derives Kv using v and KIN, then verifies the
MAC.

 u and v generate their pairwise key
Kuv = fKv(u)

Key Erasure

 At time Tmin it is no longer safe to know
KIN

 KIN is deleted from sensor memory
 All Kv derived during neighbor discovery

are deleted
 Sensor no longer has ability to

discovery neighbors.

7

Extended Pairwise Key
Scheme
 Provides some additional security if Tmin < Test can’t

be guaranteed
 Nodes are loaded with KIN

i for time Ti

 Node u must maintain all Ku
j for i<j<M

 Messages:
u -> *: u,i.
v -> u: v,MAC(Kv

i,u|v)

 Compromised node would only have valid KIN for
remaining Ti

 Costs more memory and requires more key erases

Cluster Keys

 Node u generates Ku
c
 and sends to each

of its neighbors using the pairwise key
 Each neighbor v sends u its cluster key

Kv
c

 If node u is revoked, each neighbor
must create a new cluster key and
transmit it to its remaining neighbors.

8

Global Keys

 Initially all nodes can be preloaded with
global key

 Needs to be a simple and efficient
method to distribute new global keys

 Sending new global key with each
individual key is too expensive

Authenticated Node
Revocation

 Controller uses µTesla to authenticate
revocation message of u:
Controller -> *: u, fKg

i(0),MAC(ki
T,u|fKg

i(0))
 After time interval, Ki

T is dispersed and
message can be authenticated

 Neighboring nodes of u remove its pairwise
key with u and distribute new cluster keys

9

Distribution of new global key

 Given that the network is organized as
a breadth first spanning tree

 New global key is distributed down the
tree using the cluster keys

 Distributing global key is expensive, but
infrequent

Local Broadcast Authentication

 Cluster key is used for local broadcast
 To prevent Node impersonation, a one-

way key chain is used
 Still weak security, but limits adversary

to impersonating at most the number of
packets previously sent out by the
node.

10

Survivability

 The network needs to be able to survive
when a small subset of nodes have been
unknowingly compromised

 A compromised node can send bad readings
to the base station and interfere with
neighboring nodes

 A compromised node cannot impersonate the
base station, another node, or have a large
affect on non-neighboring nodes

Defense Against Routing
Attacks

 A compromised node can spoof, alter, or
suppress routing messages.
 Not particularly effective because the sending

node can detect the alteration and forward the
dubious behavior to the base station

 Wormhole attack can be effective, but
requires compromising two nodes – One close
to base station, one in area of interest.

11

Performance: Node
Revocation
 Symmetric operations for updating cluster

keys:
Avg: 2∑s

i=1di/(N-1)
Max: max(di) + s – 1

 Max symmetric operations for distributing
new global key: 2

 Given a network of size 1000, and connection
degree of 20, avg computational cost is 2.7
symmetric operations.

 Communication costs are similar

Storage Requirements

 1 individual key
 1 global key
 d cluster keys, one for each neighbor
 L keys for one-chain for local broadcast
 Example: Given a key is 8 bytes, 20

neighbors, and a key chain of length
30, 736 bytes are required for storage.

12

Prototype Implementation

 Required 1.2 KB of RAM given 20
neighbors

 Took 8.5 seconds to discover all
neighbors. This is less than the 10s of
seconds previously shown a Mica2 Mote
could be compromised, thus Tmin< Test
holds true.

Prototype Implementation

 ACKS were lost in neighbor discovery
phase due to collisions.

 Solution: A three-way handshake was
implemented to gain reliability.
Handshake included passing cluster
keys to not cause extra overhead.

13

Security Assessment

 Highly difficult to compromise entire network
since obtaining KIN is very unlikely

 Very resistant to cloning attacks
 Vulnerable to DNS attacks by sending many

HELLO messages.
 Three-way handshake developed during the

prototype minimizes this risk

 Compromised nodes can cause localized
damage

Open Issues
 Compromised node identification left undefined.

 Could be implementation specific (known bad sensor
readings, neighboring nodes observing alteration of
messages)

 Can a compromised node claim a different node is
compromised, thus convincing the base station from
removing it from the network?

 How does updating keys handle situations of high
packet loss similar to the ACK collision issue during
node discovery?

