
1

Naming

Distributed Software Systems

2

Naming Entities

 A name in a distributed system is a string of bits
or characters that is used to refer to an entity

 Types of names
 Address: an access point of an entity
 Identifiers: a name that uniquely identifies an entity

 An identifier refers to at most one entity
 Each entity is referred to by at most one identifier
 An identifier always refers to the same entity

 Human-friendly names
 Location-independent name: a name that is independent

from its addresses



2

3

Name Spaces and Name Resolution

 Names are organized into name spaces
 A name space can be represented as a labeled,

directed graph with two types of nodes
 Leaf nodes and directory nodes
 Absolute vs relative path names
 Local names vs global names

 Name Resolution: the process of looking up a name
 Closure mechanism: knowing where and how to start name

resolution

4

Name Spaces cont’d

A general naming graph with a single root node.



3

5

Linking and Mounting

The concept of a symbolic link explained in a naming graph.

6

Linking and Mounting

Mounting remote name spaces through a specific process
protocol.



4

7

Merging Name Spaces

Organization of the DEC Global Name Service

8

Implementing Name Spaces

 Naming service: a service that allows users and
processes to add, remove, and lookup names

 Name spaces for large-scale widely distributed
systems are typically organized hierarchically

 Three layers used to implement such distributed
name spaces
 Global layer: root node and its children
 Administrational layer: directory nodes within a single

organization
 Managerial layer



5

9

Name Space Distribution

An example partitioning of the DNS name space,
including Internet-accessible files, into three layers.

10

Name Space Distribution (2)

A comparison between name servers for implementing nodes from a
large-scale name space partitioned into a global layer, as an
administrational layer, and a managerial layer.

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem



6

11

Implementation of Name Resolution

 Iterative vs recursive name resolution
 Recursive name resolution puts a higher

performance demand on each name server
 Too high for global layer name servers

 Advantages of recursive name resolution
 Caching is more effective
 Communication costs may be reduced

12

Implementation of Name Resolution (1)

The principle of iterative name resolution.



7

13

Implementation of Name Resolution (2)

The principle of recursive name resolution.

14

Implementation of Name Resolution (3)

Recursive name resolution of <nl, vu, cs, ftp>. Name servers
cache intermediate results for subsequent lookups.

#<vu>
#<vu,cs>
#<vu,cs,ftp>

#<cs>
#<cs,ftp>

#<ftp>

--

Receives and
caches

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

<vu,cs,ftp>#<nl><ni,vu,cs,ftp>root

#<vu>
#<vu,cs>
#<vu,cs,ftp>

<cs,ftp>#<vu><vu,cs,ftp>ni

#<cs>
#<cs, ftp>

<ftp>#<cs><cs,ftp>vu

#<ftp>--#<ftp><ftp>cs

Returns to
requester

Passes to
child

Looks upShould resolve
Server for
node



8

15

Implementation of Name Resolution (4)

The comparison between recursive and iterative name
resolution with respect to communication costs.

16

Example System: DNS

 Domain Name System (DNS)
 Host name to IP address translation
 Name space organized as a hierarchical rooted tree

 Name space divided into non-overlapping zones

 Name servers implement the global and administrational
layers
 Managerial layer not part of DNS
 Each zone has a name server, which is typically replicated
 Updates take place at the primary name server for a zone

– Secondary name servers request the primary name server to
transfer its content



9

17

The DNS Name Space

The most important types of resource records
forming the contents of nodes in the DNS name
space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

Description
Associated
entity

Type of
record

18

DNS Implementation (1)

An excerpt
from the
DNS
database
for the
zone
cs.vu.nl.



10

19

DNS Implementation (2)

Part of the description for the vu.nl domain
which contains the cs.vu.nl domain.

130.37.21.1Asolo.cs.vu.nl

solo.cs.vu.nlNScs.vu.nl

Record valueRecord typeName

20

Example System: X.500
 An example of a directory service

 Analogy: X.500 is to DNS as the yellow pages are to a telephone
book

 Each directory entry is made up of a collection of (attribute,
value) pairs
 Attributes can be single-valued or multiple-valued

 Collection of all directory entries is called a Directory
Information Base (DIB)

 Each entry has a globally unique name formed by a sequence
of naming attributes (Relative Distinguished Names or RDN)

 Lookup operations
 Read: Read a single record given its pathname in the Directory

Information Tree (DIT), I.e. hierarchical name space formed by
directory entries

 List: return the names of all outgoing edges of a given node in
the DIT



11

21

The X.500 Name Space (1)

A simple example of a X.500 directory entry
using X.500 naming conventions.

130.37.21.11--WWW_Server

130.37.21.11--FTP_Server

130.37.24.6, 192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitLOrganization

AmsterdamLLocality

NLCCountry

ValueAbbr.Attribute

22

The X.500 Name Space (2)

Part of the directory
information tree.



12

23

The X.500 Name Space (3)

Two directory entries having Host_Name as RDN.

192.31.231.66Host_Address192.31.231.42Host_Address

zephyrHost_NamestarHost_Name

Main serverCommonNameMain serverCommonName

Math. & Comp. Sc.OrganizationalUnitMath. & Comp. Sc.OrganizationalUnit

Vrije UniversiteitOrganizationVrije UniversiteitOrganization

AmsterdamLocalityAmsterdamLocality

NLCountryNLCountry

ValueAttributeValueAttribute

24

X.500 implementation
 Similar to DNS

 The DIT is partitioned and distributed across several servers
known as Directory Service Agents (DSA)

 Clients are represented by name resolvers called Directory
User Agents (DUA)

 Differences from DNS
 Operations for searching through a DIB given a set of criteria

that attributes should meet
 Searching is an expensive operation since several leaf nodes of

a DIT will need to be accessed
 Lightweight Directory Access Protocol (LDAP) is an

application-level protocol that is a simplified version of
X.500
 Becoming a de facto standard for Internet-based directory

services



13

25

Locating Mobile Entities

 Consider an entity that changes its location
 E.g. ftp.cs.vu.nl moves to another domain

 Cannot change name
 Two choices

 Record the address of the new machine in the DNS
database for cs.vu.nl

– If name changes again, DNS entry will have to be changed again

 Record the name of the new machine in the database, I.e.
use a symbolic link

– Inefficient lookups

 Traditional naming services such as DNS cannot
cope well with mobile entities
 Problems arise because of the direct mapping between

human-friendly names and the address of entities

26

Naming versus Locating Entities

a) Direct, single level mapping between names and addresses.
b) Two-level mapping using identities.



14

27

Locating Entities
 Simple Solutions that work in a LAN environment

 Broadcasting & Multicasting
 Message containing identifier of the entity is broadcast;

machine with an access point for the entity replies with the
address of the access point

– ARP protocol for finding the data-link address of a machine
given the IP address

 Forwarding pointers
 When an entity moves from A to B, it leaves behind a

reference to its new location at B

 Home-based Approaches
 Home agent keeps track of current location of mobile

entity

 Hierarchical Approaches

28

Forwarding Pointers (1)

 The principle of forwarding pointers using (proxy,
skeleton) pairs.



15

29

Forwarding Pointers (2)

Redirecting a forwarding pointer, by storing a
shortcut in a proxy.

30

Home-Based Approaches

 The principle of Mobile IP.



16

31

Hierarchical Approaches (1)

Hierarchical organization of a location service into
domains, each having an associated directory node.

32

Hierarchical Approaches (2)

An example of storing information of an entity having
two addresses in different leaf domains.



17

33

Hierarchical Approaches (3)

Looking up a location in a hierarchically organized
location service.

34

Hierarchical Approaches (4)

a) An insert request is forwarded to the first node that
knows about entity E.

b) A chain of forwarding pointers to the leaf node is
created.



18

35

Pointer Caches (1)

Caching a reference to a directory node of the
lowest-level domain in which an entity will reside
most of the time.

36

Pointer Caches (2)

A cache entry that needs to be invalidated because
it returns a nonlocal address, while such an
address is available.



19

37

Scalability Issues

The scalability issues related to uniformly placing subnodes of a
partitioned root node across the network covered by a
location service.


