Naming

Distributed Software Systems

Naming Entities

O A name in a distributed system is a string of bits
or characters that is used to refer to an entity

0 Types of names
> Address: an access point of an entity
» Identifiers: a name that uniquely identifies an entity
= Anidentifier refers to at most one entity
= Each entity is referred to by at most one identifier
= Anidentifier always refers to the same entity
» Human-friendly names

> Location-independent name: a name that is independent
from its addresses

Name Spaces and Name Resolution

0 Names are organized into name spaces

O A name space can be represented as a labeled,
directed graph with two types of nodes
> Leaf nodes and directory nodes
» Absolute vs relative path names
> Local names vs global names

0 Name Resolution: the process of looking up a name

» Closure mechanism: knowing where and how to start name
resolution

Name Spaces cont'd

A general naming graph with a single root node.

Data stored in n1

n2: "elke"
n3: "max" "fkeys"
n4: "steen "fhome/steen/keys"

Leaf node Q
Direct d N N
rectory node D U U "fhomefsteen/mbox"

Linking and Mounting

Data stored in n1

n2: "elke"
n3: "max"
n4: "steen"

@ "fkeys"

steen
/n_2\ /n_é n4)
Leaf node O U U . Emored in nG
wmre /7 mbox|
Directory node D

O O n6} "/home/steen/keys"

The concept of a symbolic link explained in a naming graph.

Linking and Mounting

Name server Name server for foreigh name space
Machine A Machine B

Y ¥
/Q:eys A
remote home
J&u L"nfs://flits.cs.vu.nI//home/steen"j /%:teen
'/ ; mbox\‘;
i

. Network
Reference to foreign name space

Mounting remote name spaces through a specific process
protocol.

Merging Name Spaces

m0 —»home
no —pvu

oxford

**

home keys

O OO e
Q/g\

twmre keys

O O Q "nb:/home/steen/keys"

mbox
)4

Organization of the DEC Global Name Service

Implementing Name Spaces

3O Naming service: a service that allows users and
processes to add, remove, and lookup names

0 Name spaces for large-scale widely distributed
systems are typically organized hierarchically

O Three layers used o implement such distributed
name spaces
» Global layer: root node and its children

» Administrational layer: directory nodes within a single
organization

> Managerial layer

Name Space Distribution

Global
layer

Admini-
strational
layer

Mana-
gerial
layer

An example partitioning of the DNS name space,

‘\\ index.txt

including Internet-accessible files, into three layers.

Name Space Distribution (2)

Item Global Administrational Managerial
Geographical scale of network Worldwide Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

A comparison between name servers for implementing nodes from a
large-scale hame space partitioned into a global layer, as an
administrational layer, and a managerial layer.

Implementation of Name Resolution

O Iterative vs recursive name resolution

0 Recursive name resolution puts a higher
performance demand on each name server

> Too high for global layer name servers

0 Advantages of recursive name resolution

> Caching is more effective

» Communication costs may be reduced

Implementation of Name Resolution (1)

The principle of iterative name resolution.

1. <nlvu,cs,fip>

»

)
2. #<nl>, <vu,cs, ftp>

Root
name server

3. <vu,cs ftp>

Client's
name
resolver

'

Name server
nl nhode

<nl,vu,cs,ftp> T ¢#<n|,vu,cs,ftp>

4. #<vu>, <cs, ftp>
| S.<osfipr [Name server
- vUu hode
8. fi<cs>, <ftp>
‘7-<ﬂp>—> Name server
5 Fp> cs node
Nodes are /
managed by

the same server

Implementation of Name Resolution (2)

The principle of recursive name resolution.

1. <nl,vu,cs,ftp>

<nl,vu,cs,ftp> T ¢#<nl,vu,cs,f‘tp>

»
< Root
8. #<nl,vu,cs,ftp> » name server
7. #<vu,cs,ftp> Name server
) nl node
Client's W
name
resolver 8. #=<cs ftp> Name server
> vu node
5. fi<ftp> Name server
cs hode

DQ. <vu,cs,ftp>
DS. <cs, ftp>
>4. <ftp>

Implementation of Name Resolution (3)

Server for Passes to Receives and | Returns to
Should resolve | Looks up .
node child caches requester
cs <ftp> #<ftp> - - #<ftp>
vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>
#<cs, ftp>
ni <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>
#<cs,ftp> #<vu,cs>
#<vu,cs,ftp>
root <ni,vu,cs,ftp> #<nl> <vu,cs,ftp> #<vu> #<nl>
#<vu,cs> #<nl,vu>
#<vu,cs,ftp> #<nl,vu,cs>
#<nl,vu,cs,ftp>

Recursive name resolution of <nl, wu, cs, ftp>. Name servers
cache intermediate results for subsequent lookups.

Implementation of Name Resolution (4)

Recursive name resolution

g Name server
nl node

Name server
- - vu node

¢ 13
A - R3

TTo---——______»|Name server

lterative name resolution cs hode

Long-distance communication

R2

A
A\

The comparison between recursive and iterative name
resolution with respect to communication costs.

Example System: DNS

0 Domain Name System (DNS)

> Host name to IP address translation

» Name space organized as a hierarchical rooted tree
* Name space divided into non-overlapping zones

> Name servers implement the global and administrational

layers

= Managerial layer not part of DNS
» Each zone has a name server, which is typically replicated

= Updates take place at the primary name server for a zone

— Secondary name servers request the primary name server to
transfer its content

The DNS Name Space

;I'gf:rgf ::tsig,ciated Description

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone
CNAME Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful

The most important types of resource records
forming the contents of nodes in the DNS name

17
space.
DNS Implementation (1)
Name Record type Record value |
| cs.vunl SOA star (1999121502,7200,3600,2419200,86400) |
An excer‘pf | cs.vunl NS star.cs.vu.nl [
| esvuunl NS top.cs.vu.nl 3
cs.vu.ni NS solo.cs.vu.nl |
from The cs.vu.nl TXT “Vrije Universiteit - Math. & Comp. Sc.” |
DNS cs.vu.nl MX 1 zephyr.cs.vu.nl
cs.vu.nl MX 2 tornado.cs.vu.nl
cs.vu.nl MX 3 star.cs.vu.nl i
da.rabase star.cs.vu.nl HINFO Sun Unix i
star.cs.vu.nl MX 1 star.cs.vu.nl |
fO r Th e star.cs.vu.nl MX 10 zephyr.cs.vu.ni }
star.cs.vu.nl A 130.37.24.6 |
zZohe star.cs.vu.nl A 192.31.231.42 |
zephyr.cs.vu.nl HINFO Sun Unix
Cs VU n/ zephyr.cs.vu.ni MX 1 zephyr.cs.vu.nl
° ‘ ° zephyr.cs.vu.ni MX 2 tornado.cs.vu.nl
zephyr.cs.vu.nl A 192.31.231.66
www.cs.vu.nl CNAME soling.cs.vu.nl
ftp.cs.vu.nl CNAME soling.cs.vu.nl
soling.cs.vu.nl HINFO Sun Unix
soling.cs.vu.ni MX 1 soling.cs.vu.nl
soling.cs.vu.ni MX 10 zephyr.cs.vu.ni
soling.cs.vu.nl A 130.37.24.11
laser.cs.vu.nl HINFO PC MS-DOS
laser.cs.vu.nl A 130.37.30.32
| vucs-das.cs.vu.nl PTR 0.26.37.130.in-addr.arpa

vucs-das.cs.vu.nl A 130.37.26.0

DNS Implementation (2)

Name Record type Record value
cs.vu.nl NS solo.cs.vu.nl
solo.cs.vu.nl A 130.37.21.1

Part of the description for the vu.n/ domain
which contains the cs.vu.n/ domain.

Example System: X.500

O An example of a directory service

> Analogy: X.500 is to DNS as the yellow pages are to a telephone
book

O Each directory entry is made up of a collection of (attribute,

value) pairs
> Attributes can be single-valued or multiple-valued

O Collection of all directory entries is called a Directory
Information Base (DIB)

O Each entry has a globally unique name formed by a sequence
of naming attributes (Relative Distinguished Names or RDN)

O Lookup operations

> Read: Read a single record given its pathname in the Directory
Information Tree (DIT), L.e. hierarchical name space formed by
directory entries

> List: return the names of all outgoing edges of a given node in
the DIT

20

10

The X.500 Name Space (1)

Attribute Abbr. Value

Country C NL

Locality L Amsterdam

Organization L Vrije Universiteit

OrganizationalUnit ou Math. & Comp. Sc.

CommonName CN Main server

Mail_Servers - 130.37.24.6, 192.31.231,192.31.231.66
FTP_Server - 130.37.21.11

WWW_Server - 130.37.21.11

A simple example of a X.500 directory entry

using X.500 naming conventions.
21

The X.500 Name Space (2)

Part of the directory
information tree. CN = Main server

Host_Name = star Host_Name = zephyr

22

11

The X.500 Name Space (3)

Two directory entries having Host_Name as RDN.

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam

Organization

Vrije Universiteit

Organization

Vrije Universiteit

OrganizationalUnit

Math. & Comp. Sc.

OrganizationalUnit

Math. & Comp. Sc.

CommonName Main server CommonName Main server
Host_Name star Host_Name zephyr
Host_Address 192.31.231.42 Host_Address 192.31.231.66

23

X.500 implementation

O Similar to DNS
> The DIT is partitioned and distributed across several servers
known as Directory Service Agents (DSA)
> Clients are represented by name resolvers called Directory
User Agents (DUA)
O Differences from DNS

> Operations for searching through a DIB given a set of criteria
that attributes should meet

> Searching is an expensive operation since several leaf nodes of
a DIT will need to be accessed
O Lightweight Directory Access Protocol (LDAP) is an
application-level protocol that is a simplified version of
X.500

> Becoming a de facto standard for Internet-based directory
services

24

12

Locating Mobile Entities

O Consider an entity that changes its location

» E.g. ftp.cs.vu.nl moves to another domain
= Cannot change name
> Two choices

» Record the address of the new machine in the DNS
database for cs.vu.nl
— If name changes again, DNS entry will have to be changed again
= Record the name of the new machine in the database, IL.e.
use a symbolic link
— Inefficient lookups

Q Traditional naming services such as DNS cannot
cope well with mobile entities

> Problems arise because of the direct mapping between

human-friendly names and the address of entities
25

Naming versus Locating Entities

‘ Name ‘ ‘ Name‘ ‘ Name‘ ‘ Name‘ ‘ Name ‘ ‘ Name‘ ‘ Name‘ ‘ Name‘

-
[t
\

/

Entity ID
Location
A\ J] service
‘ Address ‘ ‘ Address‘ ‘Address ‘ ‘ Address ‘ ‘ Address‘ ‘Address ‘
€) (b)

a) Direct, single level mapping between names and addresses.
b) Two-level mapping using identities.

26

13

Locating Entities

0 Simple Solutions that work in a LAN environment

» Broadcasting & Multicasting

= Message containing identifier of the entity is broadcast;
machine with an access point for the entity replies with the
address of the access point

— ARP protocol for finding the data-link address of a machine
given the IP address

» Forwarding pointers

= When an entity moves from A to B, it leaves behind a
reference to its new location at B

0 Home-based Approaches

» Home agent keeps track of current location of mobile
entity

O Hierarchical Approaches
27

Forwarding Pointers (1)

Process P2 Proxy p’ refers to
Proxy p’ same skeleton as

\ proxy p
A
LA

Process P3

Identical proxy
A&
Process P1 Skeleton — -
Proxy p Process P4 Object
>A[>/ Local y
invocation
Interprocess

communication Identical L
skeleton

28

14

Forwarding Pointers (2)

Skeleton is no

Invocattiqn longer referenced
request is by any prox
sent to object y anyproxy

2N

4
] —

Skeleton at object's Client proxy sets
current process returns a shortcut
the current location

@) (b)

Redirecting a forwarding pointer, by storing a
shortcut in a proxy.

29
Host's home L%/ Ag
Iocapon 1 Send packet to host at its home /«
% h
2. Return address I
of current Iocat|on A
&
Client's
location
71\ = “
)
3. Tunnel packet to L_)cf’
current location = Hm
"
4 Send successive packets
to current location o
D
; Host's present location <
30

15

Hierarchical Approaches (1)

The root directory Top-level
node dir(T) domain T

N Directory node
/ dir(S) of domain S
\\\\\ A subdomain S
A of top-level domain T

& (S is contained in T)

'

A leaf domain, contained in S

Hierarchical organization of a location service into

domains, each having an associated directory node.
31

Hierarchical Approaches (2)

Field with no data

Field for d i PR
dtlaem(N(;rWi?Qjam o *}/\ ‘(Location record .
pointer to N f’ & for E at node M .

\ ?
l N

Location record

with only one field, M =
. . s 1 ; e 1

cortanngansacress ") | () (O O (W)

Domain D1 Domain D2

An example of storing information of an entity having

two addresses in different leaf domains.
32

16

Hierarchical Approaches (3)

Node knows
about E, so request
Node has no is forwarded to child —

record for E, so
that request is
forwarded to
parent

Look-up
request

Domain D

Looking up a location in a hierarchically organized

location service. 33

Hierarchical Approaches (4)

Node knows
Node has no about E, so request
record for E, is no longer forwarded Node creates record
so request is) A
and stores pointer

forwarded M
to parent

- \M
Node creates
record and l @

stores address ¥,

T

request @) ®)

Domain D

i
! Insert

a) Aninsert request is forwarded to the first node that
knows about entity E.
b) A chain of forwarding pointers to the leaf node is

created.
34

17

Pointer Caches (1)

Domain D

Cached pointers E moves regularly between
to node dir(D) the two subdomains
Caching a reference to a directory node of the
lowest-level domain in which an entity will reside
most of the time. 35

Pointer Caches (2)

Cached pointer
to node dir{D) which
should be invalidated

Qriginal address
@l/(is till valid)

New address

A cache entry that needs to be invalidated because
it returns a nonlocal address, while such an
address is available. 36

18

Scalability Issues

qf\/a//'
5

%l\ Subnode of the root, responsible/w
— N for handling requests for E 4

Domain where
E currently resides

iy

=
?%Alternative, and better choice
for a subnode to handle E

Current route

Alternative route }f lookup request

of lookup request

Client requesting the current address of E 000
The scalability issues related to uniformly placing subnodes of a
partitioned root node across the network covered by a
37

location service.

19

