
1

Consistency and Replication

Distributed Software Systems

Replication and Consistency 2

Outline

 Consistency Models
 Approaches for implementing Sequential

Consistency
 primary-backup approaches
 active replication using multicast communication
 quorum-based approaches

 Update Propagation approaches
 Approaches for providing weaker consistency

 Gossip: casual consistency
 Bayou: eventual consistency

2

Replication and Consistency 3

Replication

 Motivation
 Performance Enhancement
 Enhanced availability
 Fault tolerance
 Scalability

 tradeoff between benefits of replication and work required to keep
replicas consistent

 Requirements
 Consistency

 Depends upon application
 In many applications, we want that different clients making

(read/write) requests to different replicas of the same logical data
item should not obtain different results

 Replica transparency
 desirable for most applications

Replication and Consistency 4

Data-Centric Consistency Models

The general organization of a logical data store,
physically distributed and replicated across multiple
processes.

3

Replication and Consistency 5

Consistency Models

 Consistency Model is a contract between processes
and a data store
 if processes follow certain rules, then store will work

“correctly”

 Needed for understanding how concurrent reads and
writes behave wrt shared data

 Relevant for shared memory multiprocessors
 cache coherence algorithms

 Shared databases, files
 independent operations

 our main focus in the rest of the lecture

 transactions

Replication and Consistency 6

Strict Consistency

Behavior of two processes, operating on the same data item.

A strictly consistent store A store that is not strictly consistent.

Any read on a data item x returns a value corresponding to the
result of the most recent write on x.

The problem with strict consistency is that it relies on absolute
global time

4

Replication and Consistency 7

Sequential Consistency (1)

a) A sequentially consistent data store.
b) A data store that is not sequentially consistent.

Sequential consistency: the result of any execution is the same as if the read
and write operations by all processes were executed in some sequential
order and the operations of each individual process appear in this sequence
in the order specified by its program

Replication and Consistency 8

Linearizability

 Definition of sequential consistency says nothing
about time
 there is no reference to the “most recent” write operation

 Linearizability
 weaker than strict consistency, stronger than sequential

consistency
 operations are assumed to receive a timestamp with a global

available clock that is loosely synchronized
 The result of any execution is the same as if the operations

by all processes on the data store were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified by its
program. In addition, if tsop1(x) < tsop2(y), then OP1(x) should
precede OP2(y) in this sequence

5

Replication and Consistency 9

Example

Client 1

X1 = X1 + 1;

Y1 = Y1 + 1;

Client 2

A = X2;
B = Y2;

If (A > B)
 print(A)
else….

Replication and Consistency 10

Linearizable

Client 1

X = X + 1;

Y = Y + 1;

Client 2

A = X;
B = Y;

If (A > B)
 print(A)
else ….

6

Replication and Consistency 11

Not linearizable but sequentially consistent

Client 1

X = X + 1;

Y = Y + 1;

Client 2

A = X;
B = Y;

If (A > B)
 print(A)
else

Replication and Consistency 12

Neither linearizable nor sequentially consistent

Client 1

X = X + 1;

Y = Y + 1;

Client 2

A = X;
B = Y;

If (A > B)
 print(A)
else

7

Replication and Consistency 13

Causal Consistency

This sequence is allowed with a causally-consistent store, but not with
sequentially or strictly consistent store.

Necessary condition: Writes that are potentially causally related must be seen by
all processes in the same order. Concurrent writes may be seen in a different
order on different machines.

Replication and Consistency 14

Causal Consistency (2)

a) A violation of a causally-consistent store.
b) A correct sequence of events in a causally-consistent store.

8

Replication and Consistency 15

FIFO Consistency

A valid sequence of events of FIFO consistency

Necessary Condition: Writes done by a single process are seen
by all other processes in the order in which they were issued,
but writes from different processes may be seen in a
different order by different processes.

Replication and Consistency 16

Weak Consistency (1)

 Properties:
 Accesses to synchronization variables associated with

a data store are sequentially consistent

 No operation on a synchronization variable is allowed
to be performed until all previous writes have been
completed everywhere

 No read or write operation on data items are allowed to
be performed until all previous operations to
synchronization variables have been performed.

9

Replication and Consistency 17

Weak Consistency (2)

a) A valid sequence of events for weak consistency.
b) An invalid sequence for weak consistency.

Replication and Consistency 18

Release Consistency (1)

 Rules:
 Before a read or write operation on shared data is

performed, all previous acquires done by the process
must have completed successfully.

 Before a release is allowed to be performed, all previous
reads and writes by the process must have completed

 Accesses to synchronization variables are FIFO
consistent (sequential consistency is not required).

10

Replication and Consistency 19

Release Consistency (2)

A valid event sequence for release consistency.

Replication and Consistency 20

Entry Consistency (1)

Conditions:
 An acquire access of a synchronization variable is not allowed to

perform with respect to a process until all updates to the guarded
shared data have been performed with respect to that process.

 Before an exclusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in
nonexclusive mode.

 After an exclusive mode access to a synchronization variable has
been performed, any other process's next nonexclusive mode
access to that synchronization variable may not be performed until it
has performed with respect to that variable's owner.

11

Replication and Consistency 21

Entry Consistency (2)

A valid event sequence for entry consistency.

Replication and Consistency 22

Summary of Consistency Models

a) Consistency models not using synchronization operations.

b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is entered.Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from different processes
may not always be seen in that order

FIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in timeSequential

All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

12

Replication and Consistency 23

Weak Consistency Models

 The weak consistency models that use
synchronization variables (release, entry consistency)
are mostly relevant to shared multiprocessor systems
 also modern CPUs with multiple pipelines, out-of-order

instruction execution, asynchronous writes, etc.

 In distributed systems, weak consistency typically
refers to weaker consistency models than sequential
consistency
 causal consistency, e.g. as used in the Gossip system

 optimistic approaches such as those used in Bayou, Coda
that use application-specific operations to achieve eventual
consistency

Replication and Consistency 24

Eventual Consistency

The principle of a mobile user accessing different
replicas of a distributed database.

13

Replication and Consistency 25

Sequential Consistency

 Good compromise between utility and
practicality
 We can do it

 We can use it

 Strict consistency: too hard

 Less strict: replicas can disagree forever

Replication and Consistency 26

Mechanisms for Sequential Consistency

 Primary-based replication protocols

 Replicated-write protocols
 Active replication using multicast communication

 Quorum-based protocols

14

Replication and Consistency 27

System model

 Assume replica manager apply operations to
its replicas recoverably

 Set of replica managers may be static or
dynamic

 Requests are reads or writes (updates)

Replication and Consistency 28

A basic architectural model for the management
of replicated data

FE

Requests and
replies

C

ReplicaC

ServiceClients Front ends

managers

RM

RMFE

RM

15

Replication and Consistency 29

System model

Five phases in performing a request
 Front end issues the request

 Either sent to a single replica or multicast to all replica mgrs.

 Coordination
 Replica managers coordinate in preparation for the execution of

the request, I.e. agree if request is to be performed and the
ordering of the request relative to others

– FIFO ordering, Causal ordering, Total ordering

 Execution
 Perhaps tentative

 Agreement
 Reach consensus on effect of the request, e.g. agree to commit

or abort in a transactional system

 Response

Replication and Consistency 30

The passive (primary-backup) model

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

Front ends only communicate with primary

16

Replication and Consistency 31

Passive (primary-backup) replication

 Request: FE issues a request containing a unique
identifier to the primary replica manager

 Coordination: The primary takes each request in the
order in which it receives it

 Execution: The primary executes the request and
stores the response

 Agreement: If the request is an update, the primary
sends the updated state, the response, and the
unique id to all backups. The backups send an
acknowledgement

 Response: The primary responds to the front end,
which hands the response back to the client

Replication and Consistency 32

Passive (primary-backup) replication

 Implements linearizability if primary is correct, since
primary sequences all the operations

 If primary fails, then system retains linearizability if a
single backup becomes the new primary and if the
new system configuration takes over exactly where
the last left off
 If primary fails, it should be replaced with a unique backup
 Replica managers that survive have to agree upon which

operations had been performed when the replacement
primary takes over

 Requirements met if replica managers organized as a group
and if primary uses view-synchronous communication to
propagate updates to backups
 Will discuss view-synchronous communication in next class

17

Replication and Consistency 33

Active replication using multicast

 Active replication
 Front end multicasts request to each replica using

a totally ordered reliable multicast

 System achieves sequential consistency but not
linearizabilty
 Total order in which replica managers process requests

may not be same as real-time order in which clients
made requests

Replication and Consistency 34

Active replication

FE CFEC RM

RM

RM

18

Replication and Consistency 35

Total, FIFO and causal ordering of multicast
messages

F3

F
1

F
2

T2

T1

P1 P2 P3

Time

C3

C
1

C
2

Notice the consistent
ordering of totally ordered
messages T1 and T2,
 the FIFO-related
messages F1 and F2 and
the causally related
messages C1 and C3

 – and the otherwise
arbitrary delivery ordering
of messages.

Replication and Consistency 36

Implementing ordered multicast

 Incoming messages are held back in a queue until
delivery guarantees can be met

 Coordination between all machines needed to
determine delivery order

 FIFO-ordering
 easy, use a separate sequence number for each process

 Total ordering
 Use a sequencer

 Distributed algorithm with three phases

 Causal ordering
 use vector timestamps

19

Replication and Consistency 37

The hold-back queue for arriving multicast
messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

Replication and Consistency 38

Total ordering using a sequencer

B-deliver simply means
that the message is guaranteed
to be delivered if the multicaster
does not crash

20

Replication and Consistency 39

The ISIS algorithm for total ordering

 Each process keeps the
largest agreed sequence
number it has observed (O)
for the group and its own
largest proposed sequence
number (A)

 Each process replies to a
message from p with a
proposed sequence number
that is one larger than
max(O,A)

 p collects all proposed
sequence numbers and
selects the largest one as
the next agreed sequence
number

2
1

1

2

2

1 Message

2 Proposed Seq

P2

P3

P1

P4

3 Agreed Seq

3

3

Replication and Consistency 40

Causal ordering using vector timestamps

21

Replication and Consistency 41

Quorum-based Protocols

 Assign a number of votes to each replica

 Let N be the total number of votes

 Define R = read quorum, W=write quorum

 R+W > N

 W > N/2

 Only one writer at a time can achieve write quorum

 Every reader sees at least one copy of the most
recent read (takes one with most recent version
number)

Replication and Consistency 42

Quorum-Based Protocols

Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

22

Replication and Consistency 43

Possible Policies

 ROWA: R=1, W=N
 Fast reads, slow writes (and easily blocked)

 RAWO: R=N, W=1
 Fast writes, slow reads (and easily blocked)

 Majority: R=W=N/2+1
 Both moderately slow, but extremely high

availability

 Weighted voting
 give more votes to “better” replicas

Replication and Consistency 44

Scaling

 None of the protocols for sequential consistency
scale

 To read or write, you have to either
 (a) contact a primary copy

 (b) use reliable totally ordered multicast

 (c) contact over half of the replicas

 All this complexity is to ensure sequential consistency
 Note: even the protocols for causal consistency and FIFO

consistency are difficult to scale if they use reliable multicast

 Can we weaken sequential consistency without
losing some important features?

23

Replication and Consistency 45

Highly available services

 Emphasis on giving clients access to the service with
reasonable response times, even if some results do
not conform to sequential consistency

 Examples
 Gossip

 Relaxed consistency
– Causal update ordering

 Bayou
 Eventual consistency
 Domain-specific conflict detection and resolution

 Coda (file system)
 Disconnected operation
 Uses vector timestamps to detect conflicts

Replication and Consistency 46

Distribution Protocols

How are updates propagated to replicas
(independent of the consistency model)?
 State versus operations

1. Propagate only notification of update, i.e, invalidation
2. Transfer data from one copy to another

3. Propagate the update operation to other copies

 Push versus pull protocols

24

Replication and Consistency 47

Pull versus Push Protocols

A comparison between push-based and pull-based protocols in
the case of multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)
Response time at
client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Leases: a hybrid form of update propagation that dynamically
switches between pushing and pulling

• Server maintains state for a client for a TTL, i.e., while lease
 has not expired

Replication and Consistency 48

Epidemic Protocols

 Update propagation for systems that only need eventual
consistency

 Randomized approaches based on the theory of epidemics
 infective, susceptible, and removed servers

 Anti-entropy propagation model
 A server P picks another server Q at random, and exchanges

updates
 Three approaches

 P only pushes updates to Q
 P only pulls new updates from Q
 P and Q send updates to each other

 If many infective servers, pull-based approach is better
 If only one infective server, either approach will eventually

propagate all updates
 Rumor spreading (gossiping) will speed up propagation

 If server P has been updated, it randomly contacts Q and tries to push
the update to Q; if Q was already updated by another server, with some
probability (1/k), P loses interest in spreading the update any further

25

Replication and Consistency 49

The Gossip system

 Guarantees
 Each client obtains a consistent service over time,

i.e. replica managers only provide a client with
data that reflects the updates the client has
observed so far

 Relaxed consistency between replicas
 primarily causal consistency, but support also provided

for sequential consistency

 choice up to the application designer

Replication and Consistency 50

Display from bulletin board program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

26

Replication and Consistency 51

Gossip service operation

1. Request: Front End sends a query or update
request to a replica manager that is reachable

2. Update Response: RM replies as soon as it
receives update

3. Coordination: RM does not process the request until
it can meet the required ordering constraints.
 This may involve receiving updates from other replica

managers in gossip messages
4. Execution
5. Query Response: If the request is a query, the RM

replies at this point
6. Agreement: The replica managers update each

other by exchanging gossip messages, which
contain the most recent updates they have
received. This is done in a lazy fashion

Replication and Consistency 52

Query and update operations in a gossip
service

Query Val

FE

RM RM

RM

Query, prev Val, new

Update

FE

Update, prev Update id

Service

Clients

gossip

27

Replication and Consistency 53

A gossip replica manager, showing its main
state components

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Replication and Consistency 54

Version timestamps

 Each front end keeps a vector timestamp that reflects
the version of the latest data values accessed by the
front end
 one timestamp for every replica manager
 included in queries and updates

 Replica manager
 value timestamp: reflects updates that have been applied

(stable updates)
 replica timestamp: reflects updates that have been placed in

the log
 Example:

 if query’s timestamp = (2,4,6) and replica’s value time stamp
= (2,5,5), then RM is missing an update, and the query will
not return until the RM receives that update (perhaps in a
gossip message)

28

Replication and Consistency 55

Front ends propagate their timestamps whenever
clients communicate directly

FE

Clients

FE

Service

Vector
timestamps

RM RM

RM

gossip

Replication and Consistency 56

Bayou: an approach for implementing eventual
consistency

 System developed at Xerox PARC in the mid-90’s

 Data replication for high availability despite
disconnected operation

 Eventual consistency
 if no updates take place for a long time, all replicas will

gradually become consistent

 Domain specific conflict detection and resolution
 appropriate for applications like shared calendars

29

Replication and Consistency 57

Motivation for eventual consistency

 Sequential consistency requires that at every point, every
replica has a value that could be the result of the globally-
agreed sequential application of writes

 This does not require that all replicas agree at all times, just that
they always take on the same sequence of values

 Why not allow temporary out-of-sequence writes?
 Note: all forms of consistency weaker than sequential allow replicas

to disagree forever

 We want to allow out-of-order operations, but only if the effects are
temporary

 All writes eventually propagate to all replicas

 Writes, when they arrive, are applied in the same order at all
replicas
 Easily done with timestamps

Replication and Consistency 58

Motivating Scenario: Shared Calendar

 Calendar updates made by several people
 e.g., meeting room scheduling, or exec+admin

 Want to allow updates offline

 But conflicts can’t be prevented

 Two possibilities:
 Disallow offline updates?

 Conflict resolution?

30

Replication and Consistency 59

Two Basic Issues

 Flexible update propagation

 Dealing with inconsistencies
 detecting and resolving conflicts

 every Bayou update contains a dependency check
and a merge procedure in addition to the
operation’s specification

Replication and Consistency 60

Conflict Resolution

 Replication not transparent to application
 Only the application knows how to resolve conflicts

 Application can do record-level conflict detection, not just
file-level conflict detection

 Calendar example: record-level, and easy resolution

 Split of responsibility:
 Replication system: propagates updates
 Application: resolves conflict

 Optimistic application of writes requires that writes be
“undo-able”

31

Replication and Consistency 61

Rolling Back Updates

 Keep log of updates

 Order by some timestamp

 When a new update comes in, place it in the correct
order and reapply log of updates

 Need to establish when you can truncate the log

 Requires old updates to be “committed”, new ones
tentative

 Committed order can be achieved by designating a
replica manager as the primary replica manager

Replication and Consistency 62

Committed and tentative updates in Bayou

c0 c1 c2 cN t0 t1 ti

Committed Tentative

t2

Tentative update ti becomes the next committed update
and is inserted after the last committed update cN.

ti+1

32

Replication and Consistency 63

Flexible Update Propagation

Requirements:

 Can deal with arbitrary communication topologies

 Can deal with low-bandwidth links

 Incremental progress (if get disconnected)

 Eventual consistency

 Flexible storage management

 Can use portable media to deliver updates

 Lightweight management of replica sets

 Flexible policies (when to reconcile, with whom, etc.)

Replication and Consistency 64

Update Mechanism

Updates time-stamped by the receiving server
Writes from a particular server delivered in

order
Servers conduct anti-entropy exchanges
State of database is expressed in terms of a

timestamp vector
By exchanging vectors, can easily identify

which updates are missing
Because updates are eventually “committed”

you can be sure that certain updates have
been spread everywhere

33

Replication and Consistency 65

Session Guarantees

 When client move around and connects to
different replicas, strange things can happen
 Updates you just made are missing

 Database goes back in time

 Design choice:
 Insist on stricter consistency

 Enforce some “session” guarantees

Replication and Consistency 66

Read Your Writes

 Every read in a session should see all
previous writes in that session

 Example error: deleted email messages re-
appear

34

Replication and Consistency 67

Monotonic reads

 Disallow reads to a DB less current than
previous read

 Example error:
 Get list of email messages

 When attempting to read one, get “message
doesn’t exist” error

Replication and Consistency 68

Monotonic writes

 Writes must follow any previous writes that
occurred within their session

 Example error:
 Update to library made

 Update to application using library made

 Don’t want application depending on new library to
show up where new library doesn’t show up

35

Replication and Consistency 69

Writes Follow Reads

 If a write W followed a read R at a server X,
then at all other servers
 If W is in Y’s database then any writes relevant to

R are also there

Replication and Consistency 70

Writes follow reads

 Affects users outside session

 Traditional write/read dependencies preserved at all
servers

 Two guarantees: ordering and propagation
 Order: If a read precedes a write in a session, and that read

depends on a previous non-session write, then previous
write will never be seen after second write at any server. It
may not be seen at all.

 Propagation: Previous write will actually have propagated to
any DB to which second write is applied.

36

Replication and Consistency 71

Writes follow reads, continued

 Ordering - example error:
 Modification made to bibliographic entry, but at

some other server original incorrect entry gets
applied after fixed entry

 Propagation - example error:
 Newsgroup displays responses to articles before

original article has propagated there

Replication and Consistency 72

Supporting Session Guarantees

 Responsibility of “session manager”, not
servers

 Two sets:
 Read-set: set of writes that are relevant to session

reads

 Write-set: set of writes performed in session

 Update dependencies captured in read sets
and write sets

 Causal ordering of writes
 Use Lamport clocks

