
1

USITS, 10 March 2003Symphony

SymphonySymphony
Distributed Hashing in a Small WorldDistributed Hashing in a Small World

Gurmeet Singh Manku
Stanford University

Goal: How can thousands of hosts cooperatively maintain

a large hash table in a completely decentralized fashion?

with Mayank Bawa and Prabhakar Raghavan

Presented By Xiaorong Zhou

USITS, 10 March 2003Symphony

AcknowledgementAcknowledgement

The following slides are borrowed from

the author’s talk at USITS 2003.

USITS, 10 March 2003Symphony

DHTsDHTs: The Big Picture: The Big Picture

Load BalanceLoad Balance

“How do we splice the hash table evenly?”“How do we splice the hash table evenly?”
Nodes choose their ID in the hash space
uniformly at random”.

Caching, Hotspots, Fault Tolerance, Caching, Hotspots, Fault Tolerance,
Replication, ...Replication, ...

x x ------ xx

Topology EstablishmentTopology Establishment

“How do we route with small state per node?”“How do we route with small state per node?”

Deterministic Randomized
(CAN/Chord) (Pastry/ Tapestry) (Symphony)

USITS, 10 March 2003Symphony

Spectrum of DHT ProtocolsSpectrum of DHT Protocols

Protocol #links latency

CAN O(log n) O(log n)
Chord O(log n) O(log n)

Viceroy O(1) O(log n)
Tapestry O(log n) O(log n)
Pastry O(log n) O(log n)

Deterministic
Topology

Partly
Randomized
Topology

Completely
Randomized
Topology

Symphony 2k+2 O((log2 n)/k)

2

USITS, 10 March 2003Symphony

Symphony in a NutshellSymphony in a Nutshell
Nodes arranged in a unit circle (perimeter = 1)

Arrival --> Node chooses position along circle
uniformly at random

Each node has 1 short link (next node on circle)
and k long links

node long link short link

A typical Symphony network

?

Fault Tolerance:
No backups for long links! Only short links
are fortified for fault tolerance.

Adaptation of Small World Idea: [Kleinberg00]
Long links chosen from a probability distribution

function: p(x) = 1 / x log n where n = #nodes.

Simple greedy routing:
“Forward along that link that minimizes
the absolute distance to the destination.”

Average lookup latency = O((log2 n) / k) hops

USITS, 10 March 2003Symphony

Network Size Estimation ProtocolNetwork Size Estimation Protocol

x = Length of arc
1/x = Estimate of n
(Idea from Viceroy)

Problem: What is the current value of n, the total number of nodes?

- 3 arcs are enough.
- Re-linking Protocol not worthwhile.

USITS, 10 March 2003Symphony

Intuition Behind Symphony’s PDFIntuition Behind Symphony’s PDF

Distance to long distance neighbour

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

0 ¼ ½ 1

Chord

Distance to long distance neighbour

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

0 ¼ ½ 1

Distance to long distance neighbour

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

0 ¼ ½ 1

0 ¼ ½ 1

Pr
ob
ab
il
it
y

D
is
tr
ib
ut
io
n

Symphony

Distance to long distance neighbour

USITS, 10 March 2003Symphony

Step 0: SymphonyStep 0: Symphony

0 ¼ ½ 1

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

p(x) = 1 / (x log n)

Symphony:
“Draw from the PDF log n times”

Distance to long distance neighbour

3

USITS, 10 March 2003Symphony

Step 1: StepStep 1: Step--SymphonySymphony

0 ¼ ½ 1

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

p(x) = 1 / x log n

Step-Symphony:
“Draw from the discretized PDF log n times”

Distance to long distance neighbour

USITS, 10 March 2003Symphony

Step 2: Divide PDF into log n Equal BinsStep 2: Divide PDF into log n Equal Bins

0 ¼ ½ 1

Step-Partitioned-Symphony:
“Draw exactly once from each of log n bins”

Distance to long distance neighbour

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

USITS, 10 March 2003Symphony

Step 3: Discrete PDFStep 3: Discrete PDF

0 ¼ ½ 1

Distance to long distance neighbour

Chord:
“Draw exactly once from each of log n bins”
Each bin is essentially a point.

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

USITS, 10 March 2003Symphony

From Chord to SymphonyFrom Chord to Symphony

0 ¼ ½ 1

Distance to long distance neighbour

Pr
ob
ab
ili
ty
 D
is
tr
ib
ut
io
n

p(x) = 1 / x log n

4

USITS, 10 March 2003Symphony

Two OptimizationsTwo Optimizations

1-Lookahead

- List of neighbor’s neighbors
- Reduces avg latency by 40%

Bi-directional Routing

- Exploit both outgoing and incoming links!
- Route to the neighbor that
minimizes absolute distance to destination
- Reduces avg latency by 25-30%

USITS, 10 March 2003Symphony

Latency Latency vsvs State MaintenanceState Maintenance

TCP Connections

A
ve
ra
ge

La
te
nc
y

5

10

15

0 10 20 30 40 50 60

Viceroy
x

x CAN

Pastry
x x Chord

Tapestry
X Pastry

Network size: n=2Network size: n=21515 nodesnodes

Many more graphs in the paper.

Symphony x
x x x

x

x x x

x

x

+ Bidirectional Links
+ 1-Lookahead

USITS, 10 March 2003Symphony

Why Symphony?Why Symphony?

1. Low state maintenance
Low degree --> Fewer pings/keep-alives, less control traffic
Low degree --> Distributed locking and coordination overhead

over smaller sets of nodes
Low degree --> Smaller bootstrapping time when a node joins

Smaller recovery time when a node leaves

2. Fault tolerance
Only short links are bolstered. No backups for long links !

3. Smooth out-degree vs latency tradeoff
Only protocol that offers this tuning knob even at run time!
Out-degree is not fixed at runtime, or as a function of network size.

4. Flexibility and support for heterogeneity

Different nodes can have different #links !

USITS, 10 March 2003Symphony

Family of Harmonic Distributions

PDF: p(x) = 1 / x log n for x in [1/n, 1]

Cumulative PDF: P(x) = log xn / log n for x in [1/n, 1]

Increasing n

5

USITS, 10 March 2003Symphony

1. Estimation Protocol

USITS, 10 March 2003Symphony

2. Average Latency

- # links ++ � Avg Latency --
- Diminishing returns with increasing #links
- Bidirectional better than Unidirectional

USITS, 10 March 2003Symphony

3. Latency distribution for n = 2^14 nodes

- #links ++ � Avg latency --
- #links ++ � Variance --

USITS, 10 March 2003Symphony

4. Latency with log2(n) links per node

Vertical errorbars capture 99% of the distribution

6

USITS, 10 March 2003Symphony

5. Choice of s for Estimation Protocol

- No change in avg latency with increasing s
- Vertical errorbars capture 99% of distribution

USITS, 10 March 2003Symphony

6. Cumulative #relinks for expanding network

- Exactly one node arrives per timestep

USITS, 10 March 2003Symphony

7a. Impact of 1-Lookahead

- 1-Lookahead diminishes avg latency by roughly 40%

USITS, 10 March 2003Symphony

7b. Impact of 1-Lookahead

7

USITS, 10 March 2003Symphony

8. DYNAMIC Network of 100K nodes

- Vertical errorbars capture 99% of the distribution
- Avg livetime = 23.5 hrs. Avg sleeptime = 0.5 hrs.
- 1st day: linear increase. 2nd day: steady. 3rd day: linear decrease USITS, 10 March 2003Symphony

9a. Fault tolerance

- n = 2^16 nodes

USITS, 10 March 2003Symphony

9b. Fault tolerance

- n = 2^16 nodes
- Only short links need be fortified!

USITS, 10 March 2003Symphony

10. Cost of Joining & Leaving

- n = 2^16 nodes
- Only short links need be fortified!

8

USITS, 10 March 2003Symphony

11. Bandwidth Profile

USITS, 10 March 2003Symphony

12. Comparison with Uniformly Random Links

USITS, 10 March 2003Symphony

• Resources

– The author’s homepage

• http://www.cs.stanfod.edu/~manku

– Stanford Peers

• http://www-db.stanford.edu/peers/

Question?

