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DHTsDHTs: The Big Picture: The Big Picture

Load BalanceLoad Balance

“How do we splice the hash table evenly?”“How do we splice the hash table evenly?”
Nodes choose their ID in the hash space
uniformly at random”.

Caching, Hotspots, Fault Tolerance, Caching, Hotspots, Fault Tolerance, 
Replication, ...Replication, ...

x x ------ xx

Topology EstablishmentTopology Establishment

“How do we route with small state per node?”“How do we route with small state per node?”

Deterministic                                      Randomized
(CAN/Chord)          (Pastry/ Tapestry)       (Symphony)
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Spectrum of DHT ProtocolsSpectrum of DHT Protocols

Protocol     #links    latency 

CAN          O(log n)       O(log n)
Chord        O(log n)       O(log n) 

Viceroy        O(1)          O(log n)
Tapestry   O(log n)       O(log n)
Pastry       O(log n)       O(log n)

Deterministic
Topology

Partly
Randomized
Topology

Completely
Randomized
Topology

Symphony      2k+2     O((log2 n)/k)
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Symphony in a NutshellSymphony in a Nutshell
Nodes arranged in a unit circle (perimeter = 1)

Arrival --> Node chooses position along circle
uniformly at random

Each node has 1 short link (next node on circle)
and k long links

node                long link               short link

A typical Symphony network

?

Fault Tolerance:
No backups for long links! Only short links
are fortified for fault tolerance.

Adaptation of Small World Idea: [Kleinberg00]
Long links chosen from a probability distribution

function:  p(x) = 1 / x log n where n = #nodes.

Simple greedy routing:
“Forward along that link that minimizes 
the absolute distance to the destination.”

Average lookup latency = O((log2 n) / k) hops
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Network Size Estimation ProtocolNetwork Size Estimation Protocol

x  =  Length of arc
1/x  =  Estimate of n
(Idea from Viceroy)

Problem: What is the current value of n, the total number of nodes?

- 3 arcs are enough.
- Re-linking Protocol not worthwhile.
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Intuition Behind Symphony’s PDFIntuition Behind Symphony’s PDF

Distance to long distance neighbour
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Step 0: SymphonyStep 0: Symphony
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p(x) = 1 / (x log n)

Symphony:
“Draw from the PDF log n times”

Distance to long distance neighbour
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Step 1: StepStep 1: Step--SymphonySymphony
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p(x) = 1 / x log n

Step-Symphony:
“Draw from the discretized PDF log n times”

Distance to long distance neighbour
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Step 2: Divide PDF into log n Equal BinsStep 2: Divide PDF into log n Equal Bins

0          ¼         ½                    1

Step-Partitioned-Symphony:
“Draw exactly once from each of log n bins”

Distance to long distance neighbour
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Step 3: Discrete PDFStep 3: Discrete PDF

0          ¼         ½                    1

Distance to long distance neighbour

Chord:
“Draw exactly once from each of log n bins”
Each bin is essentially a point.
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From Chord to SymphonyFrom Chord to Symphony
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p(x) = 1 / x log n
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Two OptimizationsTwo Optimizations

1-Lookahead

- List of neighbor’s neighbors
- Reduces avg latency by 40%

Bi-directional Routing

- Exploit both outgoing and incoming links!
- Route to the neighbor that
minimizes absolute distance to destination
- Reduces avg latency by 25-30%
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Latency Latency vsvs State MaintenanceState Maintenance

# TCP Connections
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Network size: n=2Network size: n=21515 nodesnodes

Many more graphs in the paper.

Symphony x
x x x

x

x x x

x

x

+ Bidirectional Links
+ 1-Lookahead
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Why Symphony?Why Symphony?

1.  Low state maintenance
Low degree --> Fewer pings/keep-alives, less control traffic
Low degree --> Distributed locking and coordination overhead

over smaller sets of nodes
Low degree --> Smaller bootstrapping time when a node joins

Smaller recovery time when a node leaves

2. Fault tolerance
Only short links are bolstered. No backups for long links !

3. Smooth out-degree vs latency tradeoff 
Only protocol that offers this tuning knob even at run time!
Out-degree is not fixed at runtime, or as a function of network size.

4. Flexibility and support for heterogeneity

Different nodes can have different #links !
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Family of Harmonic Distributions

PDF:    p(x) = 1 / x log n            for    x in [1/n, 1]

Cumulative PDF:    P(x) = log xn / log n       for    x in [1/n, 1]

Increasing n
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1. Estimation Protocol
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2. Average Latency

- # links ++    � Avg Latency --
- Diminishing returns with increasing #links
- Bidirectional better than Unidirectional
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3. Latency distribution for n = 2^14 nodes

- #links ++   � Avg latency --
- #links ++   � Variance --
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4. Latency with log2(n) links per node

Vertical errorbars capture 99% of the distribution
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5. Choice of s for Estimation Protocol

- No change in avg latency with increasing s
- Vertical errorbars capture 99% of distribution
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6. Cumulative #relinks for expanding network

- Exactly one node arrives per timestep
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7a. Impact of 1-Lookahead

- 1-Lookahead diminishes avg latency by roughly 40%

USITS, 10 March 2003Symphony

7b. Impact of 1-Lookahead
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8. DYNAMIC Network of 100K nodes

- Vertical errorbars capture 99% of the distribution
- Avg livetime = 23.5 hrs.    Avg sleeptime = 0.5 hrs.
- 1st day: linear increase.  2nd day: steady. 3rd day: linear decrease USITS, 10 March 2003Symphony

9a. Fault tolerance

- n = 2^16 nodes
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9b. Fault tolerance

- n = 2^16 nodes
- Only short links need be fortified!
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10. Cost of Joining & Leaving

- n = 2^16 nodes
- Only short links need be fortified!
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11. Bandwidth Profile

USITS, 10 March 2003Symphony

12. Comparison with Uniformly Random Links
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• Resources

– The author’s homepage

• http://www.cs.stanfod.edu/~manku

– Stanford Peers

• http://www-db.stanford.edu/peers/

Question?


