Scribe: A large-scale and
decentralized application-level
multicast infrastructure

Paper by: Miguel Castro, Peter Druschel,
Anne-Marie Kermarrec,
Antony Rowstron,

IEEE JSAC,2002.
Presented by: Sankardas Roy

Acknowledgement :
Wang Ting and Wei Ran, unsw.edu.au
Yang-hua Chu, Sanjay Rao and Hui Zhang, CMU




Outline

@& Introduction

® Pastry

® The design of Scribe

® Experimental evaluation
#® Conclusion

Unicast Transmission

Gatech

.End Systems

Routers

Stanford

Berkley




IP Multicast

Gatech Stanford

-

Berkley
] Routers with multicas

support l::

*No duplicate packets
*Highly efficient bandwidth usage

Key Concerns with IP Multicast

# Scalability with number of groups
= Routers maintain per-group state
» Analogous to per-flow state for QoS guarantees

# Supporting higher level functionality is difficult
» IP Multicast: best-effort multi-point delivery service

» End systems responsible for handling higher level
functionality

= Reliability and congestion control for IP Multicast
complicated

# Deployment is difficult and slow
= ISP's reluctant to turn on IP Multicast




An important question...

#®Can we achieve

efficient multi-point delivery,
without support from the IP layer? . -
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Potential Benefits

# Scalability
= Routers do not maintain per-group state
= End systems do, but they participate in very few groups
# Easier to deploy
# Potentially simplifies support for higher level functionality
= Leverage computation and storage of end systems
» For example, for buffering packets, ACK aggregation
= Leverage solutions for unicast congestion control and reliability
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What is an efficient overlay tree?

# The delay between the source and receivers is small

# Ideally,

= The number of redundant packets on any physical link is low
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Scribe

@ Scribe

" A large-scale, decentralized application-
level multicast infrastructure built on fop of

Pastry

= Scaling across a wide range of groups and

group sizes
® Pastry

A scalable, self-organizing, robust object

location and routing substrate




Pastry

# Given a message and a key, Pastry routes the
message to the node with the nodeId that is

numerically closest to the key in less than log,®N
steps on average.

#® Pastry routing scheme:
= routing table

= each entry refers o one of potentially many nodes
whose nodeId have the appropriate prefix

= Forward to the node whose nodeId shares with the

key a prefix at least one digit longer than current
nodeId do.

Pastry - routing table
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Pastry - message routing
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Pastry - locality

# Two of Pastry's locality properties related to
Scribe:

Short routes property:

Concerns the total distance that the messages
travel along Pastry route, in each step a message is

routed o the nearest node with a longer prefix
match.

[JRoute convergence property:

Concerns the distance traveled by fwo messages
sent to the same key before converging.




Short route property
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Pastry API

® Pastry exports:

= nodeld = pastryInit(Credentials)
= route(msg,key)

= send(msg,IP-addr)

® Applications based upon Pastry exports:

= deliver(msg,key)
= forward(msg,key,nextId)
" newleafs(leafSet)

Scribe
#®APT exported:

create(credentials, groupId)

= jJoin (credentials, groupId, messageHandler)
= Jeave(credentials, groupId)

= multicast(credentials, groupId, message)
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Scribe - implementation

@ Scribe software provides the forward and
deliver methods to be invoked by Pastry

® forward

= called whenever a Scribe message is routed
through a node

® deliver
= called when a message arrives at the final

destination or when a message was
addressed to a node by IP address.

Scribe - group creation

#® Each group has a groupId
# Rendezvous point

= the Scribe node with a nodeId numerically closest
to the groupId

= is the root of the multicast tree
# Methods to create a group
= route a create message

= deliver the message to the node with appropriate
nodeId

= add the group to the group list

1



Scribe - group joining

® Forwarders.

= Scribe nodes that are part of multicast tree
= maintain a children table

# Joining group:

= sends JOIN message

= routed toward the rendezvous point
= accepts the node as a child

Model of joining mechanism

. @ Joining member ‘

‘ Joining member
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Scribe - leaving group

® Record locally that it left the group

® If no other entries, sends leave message to
its parent

# Repeats until a node is reached that still
has entries in the children table after
removing the leaving node

Scribe - multicast message

® Use Pastry to locate the rendezvous point

# Multicast messages are disseminated from

the rendezvous point along the multicast
tree to the group

® The locality properties of Pastry ensure
that the multicast tree can be used fo
disseminate messages efficiently (short
routes and route convergence)
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Model of multicast message

@ Joining member

sender

Joining member

Scribe - reliability

#® Uses TCP to disseminate message and perform flow

control

# Uses Pastry to repair the multicast tree when a

forwarder fails

= for forwarders: child calls Pastry to route a JOIN
message to a hew parent when it fails to receive

heartbeat messages
= for roots: the state associated with the

rendezvous point is replicated across k closest

nodes to the root node

= children join a new root by Pastry routing the

JOIN message
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Model of repairing
m Joining member

Joining member

Experimental Setup I

# Network: transit stub model
= 5050 router

= Tool: Georgia Tech random graph generator
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Experimental Setup IT

# Group number : 1500

# Scribe nodes : 100,000

# Minimum group size: 11

# Maximum group size: 100,000

# Group size varies according to Zipf's law
# Compare with IP multicast

®  Delay to deliver messages to group member

B Stresson each node

®  Stresson each physical link

Scalability with many small groups

Delay Penalty

# Compare the delay to multicast messages using
Scribe and IP multicast

15001 /
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000 / —RMD
/ —RAD
600 /
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Delay Penalty

Cumulative Groups

Fig. 7. Cumulative distribution of delay penalty relative to IP mul-
ticast per group (average standard deviation was 62 for RAD and 21
for RMD).
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Node Stress I

# Measure the number of groups with non-empty
children tables and the number of entries in
children tables in each Scribe node
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Fig. 8. Number of children tables per Scribe node (average standard
deviation was 58).

Node Stress IT
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Fig. 9. MNumber of children table entries per Scribe node [(average
standard deviation was 3.2).
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Link Stress

# Compare the stress imposed by Scribe and IP
multicast on each directed link in the network
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Fig. 10.

Link stress for multicasting a message to each of 1,500

groups (average standard deviation was 1.4 for Seribe and for 1.9 for
IF multicast).

Bottleneck Remover I

# Bottleneck due to inequality of node's capacity

# The bottleneck remover algorithm allows nodes to bound the

amount of multicast forwarding they do by offloading
children to other nodes

# When a node detect that it is overloaded

®  Select the group that consumes the most resources (most
children)

Choose the child of the group that is farthest away

Tell the child to join his sibling that provides the smallest
combined delay
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Bottleneck Remover IT

# The distribution of the number of children table
entries per node
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Fig. 11. Number of children table entries per Scribe node with the
bottleneck remover (average standard deviation was 57).

Scalability with many small groups

# 50,000 Scribe nodes
# 30,000 groups with 11 members each
# Distribution of children tables and children table entries per

node
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Fig. 12. Number of children tables per Scribe node.
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Scalability with many small groups
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Fig. 13. Number of children table entries per Scribe node.

Scalability with many small groups
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Fig. 14. Link stress for multicasting a message to each ot 30,000 groups.
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Conclusions

#® Scribe is a large -scale and fully
decentralized application-level multicast
infrastructure built on top of Pastry

#® Scribe scales well

#® Scribe is able to efficiently support a large
number of nodes, groups, and a wide range
of group sizes

An Evaluation of scalable Application-level
Multicast Built Using Peer-to-peer
Overlays

# Paper by: Miguel Castro et al,
INFOCOM,03.

# Presented by: Sankardas Roy
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Main topic of the Paper

# This paper evaluates tree-based and flooding-based
multicast using two different types of structured
overlay:

1) overlays which use a form of generalized
hypercube routing, e.g., Chord, Pastry and Tapestry,
2) overlays which use a numerical distance metric

to route through a Cartesian hyper-space, e.g., CAN.

# Pastry and CAN are chosen as the representatives
of each type of overlay.

Multicast Types

® Flooding

= Each multicast session (or group) form a mini-CAN
or mini-Pastry

= Flood msgs to neighbors
#® Tree based
= Root will be the source node

= When new member joins, JOIN msg is routed to
the route.

» Intermediate nodes set up routing table
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Experimental setup

# Network: transit stub model, 5050 router, Tool:

Georgia Tech random graph generator

#The 1st set of experiments run with a single
multicast group and all the overlay nodes (total
80,000) were members of the group.

#The second set of experiments run with a large
number of groups (1500) and with a wide range of
membership sizes(according to Zipf's law).
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Fig. 1. Relative delay penalty for CAN flooding with different values of d
and z.
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CAN FLOODING
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Fig. 2. Relative delay penalty for CAN flooding with and without topology-
aware optimizations using a d=10,z=5 CAN configuration.

CAN FLOODING

Configuration d=10 d=9 d=12 d=10 d=8
z=1 z=2 z=3 =53 z=10
State size 18 29 38 59 111
Joining phase
Max 91615 | 149341 197977 | 309212 | 416361
Average 154 183 219 281 431
Flooding phase
Max 1958 1595 1333 985 631
Average 3.49 3.27 2.93 273 2.69
TABLE 11

LINK STRESS FOR FLOODING IN CAN.
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CAN TREE-BASED
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Fig. 3. Relative delay penalty for CAN tree-based multicast with different
values of d and z.
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Fig. 4. Relative delay penalty for CAN tree-based multicast with and without
topology-aware optimizations using a d=8,z=10 CAN configuration.
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CAN TREE-BASED

Configuration | d=10 | d=9 [ d=12 | d=10 [ d=8
z=1 z=2 72=3 7=3 z=10
State size 18 29 38 59 111
Max 323 220 198 184 225
Average 1.69 1.49 1.42 1.37 1.36
TABLE 111

LINK STRESS FOR CAN TREE-BASED MULTICAST.

PASTRY FLOODING
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Fig. 6. Relative delay penalty for Pastry flooding with and without topology-
aware optimizations for & = 4

wilth TART without TART

RAND | TOP | RAND | TOP

Max 68074 T 654 1 2T19.0 | 61.0

Average 4.3 14 4.6 1.4
TABLE V

LINK STRESS FOR PASTRY FLOODING WITH AND WITHOUT
TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.
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PASTRY TREE-BASED
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Fig. 7. Relative delay penalty for Pastry tree-based multicast for different

values of b
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Fig. 8. Relative delay penalty for Pastry tree-based multicast with and without
topology-aware optimizations for b = 4.

with TART without TART
RAND TOP RAND TOP
Max 286.2 | 22,073.8 | 1.910.6 | 23.999.4
Average 1.17 3.34 3.87 3.90
TABLE VIL

LINK STRESS FOR PASTRY TREE-BASED MULTICAST WITH AND WITHOUT
TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.
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More than one groups (1500 groups)
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Fig. 9. CDF for RMD for 1500 concurrent multicast groups with localized
group members.

Questions?
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