Scribe: A large-scale and
decentralized application-level
multicast infrastructure

Paper by: Miguel Castro, Peter Druschel,
Anne-Marie Kermarrec,
Antony Rowstron,

IEEE JSAC,2002.
Presented by: Sankardas Roy

Acknowledgement :
Wang Ting and Wei Ran, unsw.edu.au
Yang-hua Chu, Sanjay Rao and Hui Zhang, CMU

Outline

@& Introduction

® Pastry

® The design of Scribe

® Experimental evaluation
#® Conclusion

Unicast Transmission

Gatech

.End Systems

Routers

Stanford

Berkley

IP Multicast

Gatech Stanford

-

Berkley
] Routers with multicas

support l::

*No duplicate packets
*Highly efficient bandwidth usage

Key Concerns with IP Multicast

Scalability with number of groups
= Routers maintain per-group state
» Analogous to per-flow state for QoS guarantees

Supporting higher level functionality is difficult
» IP Multicast: best-effort multi-point delivery service

» End systems responsible for handling higher level
functionality

= Reliability and congestion control for IP Multicast
complicated

Deployment is difficult and slow
= ISP's reluctant to turn on IP Multicast

An important question...

#®Can we achieve

efficient multi-point delivery,
without support from the IP layer? . -

‘_

Overlay Multicast

CMU

¢

Stanford Stanl

=" = ¥

Gatech

CMU

=
Berkeley ::ll

Stan Berk2

1

Stan2

Berkl

\BerkZ

Potential Benefits

Scalability
= Routers do not maintain per-group state
= End systems do, but they participate in very few groups
Easier to deploy
Potentially simplifies support for higher level functionality
= Leverage computation and storage of end systems
» For example, for buffering packets, ACK aggregation
= Leverage solutions for unicast congestion control and reliability

‘\»‘
Performance Concerns
Delay from CMU to Stanl
Gatech Berkl increases
\STanZ
CMU___________

Berki Berk2
Duplicate Packets: Gatech Stant
Bandwidth Wastage <@ ._1

-

o o —

What is an efficient overlay tree?

The delay between the source and receivers is small

Ideally,

= The number of redundant packets on any physical link is low

Stan2e————"— MU
Stanl

Be\rkl ‘\Ga‘rech

Berk

Stan MU
Stan

Berk Gatech
Berk2

CMU
STanZn(””,/f
Ma

Berkl Gatech
Berk2

Scribe

@ Scribe

" A large-scale, decentralized application-
level multicast infrastructure built on fop of

Pastry

= Scaling across a wide range of groups and

group sizes
® Pastry

A scalable, self-organizing, robust object

location and routing substrate

Pastry

Given a message and a key, Pastry routes the
message to the node with the nodeId that is

numerically closest to the key in less than log,®N
steps on average.

#® Pastry routing scheme:
= routing table

= each entry refers o one of potentially many nodes
whose nodeId have the appropriate prefix

= Forward to the node whose nodeId shares with the

key a prefix at least one digit longer than current
nodeId do.

Pastry - routing table

Neighborhood set

13021022 | 10200230 | 11301233 | 31301233

02212102 [22301203 | 31203203 | 33213321

Routing table

1
0
2
3

3

1 [0z93232] |
0 [Twozmzo]
o | [T] [

Namespace set

Pastry - message routing

0

7128 1

d471f1
d467c4

/ 462ba

d46ale d4213f

Route(d46alc)

65alfc di13da3

Pastry - locality

Two of Pastry's locality properties related to
Scribe:

Short routes property:

Concerns the total distance that the messages
travel along Pastry route, in each step a message is

routed o the nearest node with a longer prefix
match.

[JRoute convergence property:

Concerns the distance traveled by fwo messages
sent to the same key before converging.

Short route property

7L d462ba

A3 £
s Source route LI_L_ I o [,}
(d42131.X.Y,d462ba) ;
r

Route convergence property

o
»

Pastry API

® Pastry exports:

= nodeld = pastryInit(Credentials)
= route(msg,key)

= send(msg,IP-addr)

® Applications based upon Pastry exports:

= deliver(msg,key)
= forward(msg,key,nextId)
" newleafs(leafSet)

Scribe
#®APT exported:

create(credentials, groupId)

= jJoin (credentials, groupId, messageHandler)
= Jeave(credentials, groupId)

= multicast(credentials, groupId, message)

10

Scribe - implementation

@ Scribe software provides the forward and
deliver methods to be invoked by Pastry

® forward

= called whenever a Scribe message is routed
through a node

® deliver
= called when a message arrives at the final

destination or when a message was
addressed to a node by IP address.

Scribe - group creation

#® Each group has a groupId
Rendezvous point

= the Scribe node with a nodeId numerically closest
to the groupId

= is the root of the multicast tree
Methods to create a group
= route a create message

= deliver the message to the node with appropriate
nodeId

= add the group to the group list

1

Scribe - group joining

® Forwarders.

= Scribe nodes that are part of multicast tree
= maintain a children table

Joining group:

= sends JOIN message

= routed toward the rendezvous point
= accepts the node as a child

Model of joining mechanism

. @ Joining member ‘

‘ Joining member

12

Scribe - leaving group

® Record locally that it left the group

® If no other entries, sends leave message to
its parent

Repeats until a node is reached that still
has entries in the children table after
removing the leaving node

Scribe - multicast message

® Use Pastry to locate the rendezvous point

Multicast messages are disseminated from

the rendezvous point along the multicast
tree to the group

® The locality properties of Pastry ensure
that the multicast tree can be used fo
disseminate messages efficiently (short
routes and route convergence)

13

Model of multicast message

@ Joining member

sender

Joining member

Scribe - reliability

#® Uses TCP to disseminate message and perform flow

control

Uses Pastry to repair the multicast tree when a

forwarder fails

= for forwarders: child calls Pastry to route a JOIN
message to a hew parent when it fails to receive

heartbeat messages
= for roots: the state associated with the

rendezvous point is replicated across k closest

nodes to the root node

= children join a new root by Pastry routing the

JOIN message

14

Model of repairing
m Joining member

Joining member

Experimental Setup I

Network: transit stub model
= 5050 router

= Tool: Georgia Tech random graph generator

15

Experimental Setup IT

Group number : 1500

Scribe nodes : 100,000

Minimum group size: 11

Maximum group size: 100,000

Group size varies according to Zipf's law
Compare with IP multicast

® Delay to deliver messages to group member

B Stresson each node

® Stresson each physical link

Scalability with many small groups

Delay Penalty

Compare the delay to multicast messages using
Scribe and IP multicast

15001 /
1200
000 / —RMD
/ —RAD
600 /
300

o/

0 1 2 3 4 5
Delay Penalty

Cumulative Groups

Fig. 7. Cumulative distribution of delay penalty relative to IP mul-
ticast per group (average standard deviation was 62 for RAD and 21
for RMD).

16

Node Stress I

Measure the number of groups with non-empty
children tables and the number of entries in
children tables in each Scribe node

25000

20000 A

A\

10000

Number of Nodes

5000

a

1]

5

10 15 20 25 0 35 40
Mumlbzer of Children Tables

Fig. 8. Number of children tables per Scribe node (average standard
deviation was 58).

Node Stress IT

20000

Nodes

15000

Jumber of

10000

Num ber of Nodes

5000 44—

NV

t T T T T T
200 380 500 D 800 aso 1100
Total Humber of Children Table Entries

¥

a 100 200 300 400 500 GO0 70O 8200 900 000 1100

Total Number of Children Table Entries

Fig. 9. MNumber of children table entries per Scribe node [(average
standard deviation was 3.2).

17

Link Stress

Compare the stress imposed by Scribe and IP
multicast on each directed link in the network

20000
— Scribe
25000 = — = IP Multicast | |
|
£ 20000 :
1]
E e ;\
5 i 1
: 15000 +— -
£ 10000 / “
= F []
r L Maximum
5000 "\ i
] ¥ T ‘
1 10 100 1000 10000
Link Stress
Fig. 10.

Link stress for multicasting a message to each of 1,500

groups (average standard deviation was 1.4 for Seribe and for 1.9 for
IF multicast).

Bottleneck Remover I

Bottleneck due to inequality of node's capacity

The bottleneck remover algorithm allows nodes to bound the

amount of multicast forwarding they do by offloading
children to other nodes

When a node detect that it is overloaded

® Select the group that consumes the most resources (most
children)

Choose the child of the group that is farthest away

Tell the child to join his sibling that provides the smallest
combined delay

18

Bottleneck Remover IT

The distribution of the number of children table
entries per node

20000
2 15000
S
=
S 10000
@
=3
E \
=]
= 5000 x
0 . = - . . —

o] 10 20 30 40 S0 B0 70
Total Number of Children Tahle Entries

Fig. 11. Number of children table entries per Scribe node with the
bottleneck remover (average standard deviation was 57).

Scalability with many small groups

50,000 Scribe nodes
30,000 groups with 11 members each
Distribution of children tables and children table entries per

node
18000

iy |—sc:rib9

14000 - - scribe collapse
12000
10000 &
8000 :
£000 |
4000 1=

Fi
2000
o

a a0 100 150 200 280 300
Number of Children Tables
Fig. 12. Number of children tables per Scribe node.

Wumber of Nodes

19

Scalability with many small groups

IT

10000

BO00
000
G000
5000
4000
3000
2000
1000

0

Humber of Nodes

cribe

|- = scribe collapse

Y

A\

0 50 100 150 200 250 300 250 400
Total Number of Children Table Entries

Fig. 13. Number of children table entries per Scribe node.

Scalability with many small groups

ITT

35000 |
= = :scribe collapse
30000
scribe
25000 ip mcast !
% naive unicast
= 20000
[=]
@
£ 15000
E
=
10000 I
2o
K Y
5000 f b
0 ——.—\‘*- - T —_————
1 10 100 1000 10000 100000
Link Stress

Fig. 14. Link stress for multicasting a message to each ot 30,000 groups.

20

Conclusions

#® Scribe is a large -scale and fully
decentralized application-level multicast
infrastructure built on top of Pastry

#® Scribe scales well

#® Scribe is able to efficiently support a large
number of nodes, groups, and a wide range
of group sizes

An Evaluation of scalable Application-level
Multicast Built Using Peer-to-peer
Overlays

Paper by: Miguel Castro et al,
INFOCOM,03.

Presented by: Sankardas Roy

21

Main topic of the Paper

This paper evaluates tree-based and flooding-based
multicast using two different types of structured
overlay:

1) overlays which use a form of generalized
hypercube routing, e.g., Chord, Pastry and Tapestry,
2) overlays which use a numerical distance metric

to route through a Cartesian hyper-space, e.g., CAN.

Pastry and CAN are chosen as the representatives
of each type of overlay.

Multicast Types

® Flooding

= Each multicast session (or group) form a mini-CAN
or mini-Pastry

= Flood msgs to neighbors
#® Tree based
= Root will be the source node

= When new member joins, JOIN msg is routed to
the route.

» Intermediate nodes set up routing table

22

Experimental setup

Network: transit stub model, 5050 router, Tool:

Georgia Tech random graph generator

#The 1st set of experiments run with a single
multicast group and all the overlay nodes (total
80,000) were members of the group.

#The second set of experiments run with a large
number of groups (1500) and with a wide range of
membership sizes(according to Zipf's law).

CAN FLOODING

ORMD ERAD

Relative Delay Penalty
o - r () - w [=}] -l [++]

d=10, z=1 d=9, z=2 d=12, z=3 d=10, z=5 d=8, z=10

Fig. 1. Relative delay penalty for CAN flooding with different values of d
and z.

23

CAN FLOODING

10

- o+ ORMD |

f_g 51 ERAD [

@ 74—

a

> 817

©

o ST

(=R

@

= 3T

T oo

@

o1

g

RAND ‘ TOP RAND | TOP RAND ‘ TOP
CAN Distance Metric NDR Metric Ratio-based Metric

Fig. 2. Relative delay penalty for CAN flooding with and without topology-
aware optimizations using a d=10,z=5 CAN configuration.

CAN FLOODING

Configuration d=10 d=9 d=12 d=10 d=8
z=1 z=2 z=3 =53 z=10
State size 18 29 38 59 111
Joining phase
Max 91615 | 149341 197977 | 309212 | 416361
Average 154 183 219 281 431
Flooding phase
Max 1958 1595 1333 985 631
Average 3.49 3.27 2.93 273 2.69
TABLE 11

LINK STRESS FOR FLOODING IN CAN.

24

CAN TREE-BASED

b
wn

O RMD
W RAD

w
[
! I

w
!

o
w
I

Relative Delay Penalty
S

o
w
!

o
I

d=10, z=1 d=9, z=2 d=12,2=3 d=10, z=5 d=8, z=10

Fig. 3. Relative delay penalty for CAN tree-based multicast with different
values of d and z.

CAN TREE-BASED

@

= RMD

Relative Delay Penalty

CAN Distance Metric NDR Metric Ratio-based Metric

Fig. 4. Relative delay penalty for CAN tree-based multicast with and without
topology-aware optimizations using a d=8,z=10 CAN configuration.

25

CAN TREE-BASED

Configuration | d=10 | d=9 [d=12 | d=10 [d=8
z=1 z=2 72=3 7=3 z=10
State size 18 29 38 59 111
Max 323 220 198 184 225
Average 1.69 1.49 1.42 1.37 1.36
TABLE 111

LINK STRESS FOR CAN TREE-BASED MULTICAST.

PASTRY FLOODING

o

45 ORMD ‘
z 4 mRAD
é 35
a
>3
225
g 2
=R¥3
T
I
05
)
RAND TORP RAND TOR
Pastry withTART Pastry without TART

Fig. 6. Relative delay penalty for Pastry flooding with and without topology-
aware optimizations for & = 4

wilth TART without TART

RAND | TOP | RAND | TOP

Max 68074 T 654 1 2T19.0 | 61.0

Average 4.3 14 4.6 1.4
TABLE V

LINK STRESS FOR PASTRY FLOODING WITH AND WITHOUT
TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.

26

PASTRY TREE-BASED

o
i

o
n

Relative Dﬂay Penalty
i

w

o

o

b

QRMD

WRAD

=4

b=2

b=3

b=4

Fig. 7. Relative delay penalty for Pastry tree-based multicast for different

values of b

PASTRY TREE-BASED

@

45— @R |
2 44+— mprap
éﬁ 5
= 3
T25
3
1 H
£15
& 11
0.5
o
D | ToR mnn | Top
Pastry with TART Pastry without TART

Fig. 8. Relative delay penalty for Pastry tree-based multicast with and without
topology-aware optimizations for b = 4.

with TART without TART
RAND TOP RAND TOP
Max 286.2 | 22,073.8 | 1.910.6 | 23.999.4
Average 1.17 3.34 3.87 3.90
TABLE VIL

LINK STRESS FOR PASTRY TREE-BASED MULTICAST WITH AND WITHOUT
TOPOLOGY-AWARE OPTIMIZATIONS FOR b = 4.

27

More than one groups (1500 groups)

1

oo [P 7 T
cosl NS/ \
g N [cwRe]
E [/

| /]

g o [/]

2 g, [/]

£ [/A

30 [/] N omtes]
oA

T T T T T
2 3 4 5 8 7
Relative Maximum Delay Penalty

(=}

Fig. 9. CDF for RMD for 1500 concurrent multicast groups with localized
group members.

Questions?

	Scribe: A large-scale and decentralized application-level multicast infrastructure
	Outline
	Scribe
	Pastry
	Pastry – routing table
	Pastry – message routing
	Pastry – locality
	Short route property
	Route convergence property
	Pastry API
	Scribe
	Scribe - implementation
	Scribe – group creation
	Scribe – group joining
	Model of joining mechanism
	Scribe – leaving group
	Scribe – multicast message
	Model of multicast message
	Scribe – reliability
	Model of repairing
	Experimental Setup I
	Experimental Setup II
	Delay Penalty
	Node Stress I
	Node Stress II
	Link Stress
	Bottleneck Remover I
	Bottleneck Remover II
	Scalability with many small groups
	Scalability with many small groups II
	Scalability with many small groups III
	Conclusions
	Experimental setup
	CAN FLOODING
	CAN FLOODING
	CAN FLOODING
	CAN TREE-BASED
	CAN TREE-BASED
	CAN TREE-BASED
	PASTRY FLOODING
	PASTRY TREE-BASED
	PASTRY TREE-BASED
	More than one groups (1500 groups)
	Questions?

