
1

1

Security for Structured
Peer-to-peer Overlay
Networks

By Miguel Castro et al. OSDI’02
Presented by Shiping Chen in

IT818

2

Acknowledgement
Some of the following slides are
borrowed from talks by Yun Mao
(University of Pennsylvania)

3

Outline
Background & Model of P2P Network
How to achieve Secure Routing
How to use Secure Routing
Conclusions

2

4

What is the paper about and not
about

Not about traditional attacks
SYN flood, IP Spoofing, Buffer overflow, DoS
attacks on resource access
Keep in mind these attacks still work

About unique security problems in P2P
Goal: Secured Routing

Ensure that when a correct node sends a
message to a key, the message reaches all
correct replica roots for the key with very
high probability.

5

What’s new in P2P for
security?

Nodes are MUCH more powerful
Assign nodeID themselves
Act as a router: has routing table,
forwarding messages..

Fully Decentralized
no authorization and authentication
You can trust nobody
Dynamic & self-organizing

6

Typical Routing Model
Routing

Given a key, locate the corresponding node
with high probability

Pastry, Tapestry
Internet topology-aware in routing-table

Chord, CAN
Routing-table constrained

Performance and security assumption:
nodeID uniform random distribution

3

7

Fault model
Byzantine failure model
N: number of total nodes
f: (0<=f<1) the fraction of nodes that
may be faulty
cN: (1/N<=c<=f) bound size of
independent coalitions

8

Network model
Assumption: no NAT, no DHCP
Network level and Overlay level
Adversary has complete control over
network-level communication
Adversaries may delay messages
between correct nodes, but we
assume that any message will go
through a no faulty route in time D
with Prob. PD

9

Possible Attacks and
Counter Measures

Attackes
On nodeID assignment
On routing maintenance
On using routing table to forward
messages

Counter measures
Securely nodeId assignment
Secure routing table maintenance
Secure message forwarding

4

10

(1) NodeID Assignment
Attack

What if attacker can choose nodeID?
Surround a victim node
Partition a p2p network
become the key holder (root)

Self ID generation
Random (freenet), bad
hash IP (chord), bad(?)

Fundamental assumption: there is a
uniform random distribution of nodeIds
that cannot be controlled by attacks

11

Solution: Certified NodeIDs
Move ID generation to trusted CAs

Centralized: survival under Sybil attack
Multiple CAs
working offline, open a connection
when needed
Include network address
money or puzzles: prevent attacker get
too many nodeIds or too quickly

12

Review CA solutions
Not a new problem.
Pros

Weaker than those used to verify web
sites. Don’t have to bind with real-
world ID

Cons
Doesn’t work with small overlay
network
Doesn’t work with dynamic nodeID
(CAN)

5

13

(2) Attacks on maintaining routing
table

Fake the closest node
Intercept probe message, let a near node to
reply
This attack is harder when c is small
Can be ruled out if bind IP addr to nodeId

Supply faulty routing update
Faulty info propagate
(1-f)*f+f*1>f
Routing algorithm related
Pastry VS Chord

14

Solution: Constrained Routing Table

Use two routing tables: Pastry+Chord
First: normal locality-aware Pastry routing
table

Slot(I,d): share first l digits, has value d in l+1 digit
Second: Constrained Pastry routing table

Slot(l,d): closest nodeId to a point p
p: share first l digits, has value d in l+1 digit, and has
the same remaining digit

First is efficient, second is for backup

15

New Algorithms to Initialize
and Maintain the routing table

Bootstrap nodes
Use a set of diverse bootstrap nodes
It’s big enough to ensure one is correct

Procedure
Pick up a set of bootstrap nodes and ask them to route
using its nodeId as the key
No-faulty bootstrap node uses secure forwarding
techniques
Collects all the proposed neighbor set from each of
bootstrap nodes, pick the “closed” as its neighbor
Pick the route entry with minimal delay as the locality-
aware routing table
Initialize each entry of constrained routing table as the
live nodeId closest to the desired point p in the id space
(secure forwarding)

6

16

Review: constraints on routing
tables

Idea: trade complexity (2 routing tables) to
both security and performance, but…
Complexity implies low performance

Maintain more routing tables
Expensive when building constrained routing
table if b>1 unless more complex

Complexity implies insecurity
How to guarantee bootstrap node secure?

Faulty routing tables still diffuse: (1-
f)*f+f*1>f

17

(3) Attack on forwarding
Simply ignore forwarding msgs

Failed if ANY one in routing is faulty
Prob. of success routing between two
correct nodes: (1-f)h-1 (No conspiring
needed)

Root node for a key maybe faulty
Prob. of success routing to a root : (1-f)h

(h bounded to O(logN))
E.g. f=10%, successful routing=65%

18

Probability of Routing in
Pastry

7

19

Solution on forwarding
The most important part of Secure
Routing
Basic Idea

Apply failure test to determine if routing
worked correctly.
If no, use redundant and/or iterative routing.

Goal – accomplish in reasonable
time/expense

20

Routing failure test
Takes a key and a set of prospective
replica roots for the key
Return negative if the set of roots is
likely to be correct for the key
Otherwise, return positive
Timeout to detect ignoring routing
msgs

21

Routing failure test
Observation on average density of nodeID

The average density of nodeIds per unit of
`volumn` in the id space is greater than the
average density of faulty nodeIds

Basic idea
Comparing density of nodeIDs in the neighbor
set of the sender VS the density of nodeIDs
close to the replica roots of the destination key.

8

22

Failure test in Pastry
Density (N live nodes, D=2^128 nodeId space)

average numerical distance u between consecutive nodeIDs in
the neighbor set.
Distance between normal consecutive nodeIds

Independent exponential random variable with mean D/N,
Distance between fault consecutive nodeIds
Independent exponential random variable with mean : D/(c*N),

Failure Test: urn<up * gamma
up: average numerical distance between consecutive NodeIds in
neighbor set of p
unp: average numerical distance between consecutive nodeIds in rn

Fail cases:
False positive: alpha<=fun (gamma, n, k)
False negative: beta<=fun (gamma, n, k, c)
n is the sample used to compute up, k is the number of sample to
compute unp
Independent of N , provided k<<N

23

Accuracy of detection

24

Exceptions
Collect nodeID certificates that have left
the overlay increase the density
Mix both faulty and good nodes.

Have to contact all prospective replicas
nodeID suppression attack

Idea: make it hard to calculate on density
Solution: +alpha, -beta (assume more failure!)

9

25

Simulation: without
suppression

26

Simulation: with suppression

27

Tradeoff between alpha and
beta

10

28

Redundant routing
Invoked when failure test is positive
Route copies of the msgs over multiple
routes toward each of the dest key’s
replica roots.

Expectation: at least one copy is correct
CAN & Tapestry

Ask the neighbors to forward the copies of the
message to the replica keys.

Pastry & Chord
anycast

29

Redundant Routing
Simulation

(30%, 0.999)

30

Checked iterative routing
Alternative to redundant routing
Basic idea

The sender starts by looking up the next hop in its
routing table and setting a variable n to point to that
node
Then asks the node for the next hop and update n to
point to the returned value
The process repeated until reach the destination key

Expensive than recursive but more secure
Add hop tests to make iterative routing stronger

Better for constraint routing table

11

31

Review on the solution
No perfect solution.
Protocol specific
Tricky in failure test

But subject to more tricky attacks!
Performance is low

Trade off security for improved
performance

32

Now we have Secure
Routing

Ensure that when a correct node
sends a message to a key, the
message reaches all correct replica
roots for the key with very high
probability.

Slow, expensive
Use common routing as possible as we
can

33

When to use secure routing
Joining

Or point to all faulty nodes
Inserting

Or adversary arrange for all replicas
Reading

No. use self-certifying data.

12

34

Summary

Failure test
redundant routing
Checked Iterative routing

Forwarding

Act like chord
Constrained routing table

Routing table
maintenance

CA NodeID
generation

Pastry

35

Conclusions
Keep it as simple as possible
It is a hard problem – no perfect
solution now
Harder when conspiracy
Have to trust something

CAs, bootstrap nodes

36

Discussion: beyond this paper

Given a nodeID, how to actively
detect whether it is malicious or not?
How to block the faulty nodes?
Why not trust more?

by certification
by “credit history” or feedback

	Security for Structured Peer-to-peer Overlay Networks
	Acknowledgement
	Outline
	What is the paper about and not about
	What’s new in P2P for security?
	Typical Routing Model
	Fault model
	Network model
	Possible Attacks and Counter Measures
	(1) NodeID Assignment Attack
	Solution: Certified NodeIDs
	Review CA solutions
	(2) Attacks on maintaining routing table
	Solution: Constrained Routing Table
	New Algorithms to Initialize and Maintain the routing table
	Review: constraints on routing tables
	(3) Attack on forwarding
	Probability of Routing in Pastry
	Solution on forwarding
	Routing failure test
	Routing failure test
	Failure test in Pastry
	Accuracy of detection
	Exceptions
	Simulation: without suppression
	Simulation: with suppression
	Tradeoff between alpha and beta
	Redundant routing
	Redundant Routing Simulation
	Checked iterative routing
	Review on the solution
	Now we have Secure Routing
	When to use secure routing
	Summary
	Conclusions
	Discussion: beyond this paper

