:‘ Acknowledgment
A survey of Peer-to-Peer

Security Issues Some of the followings slides are
borrowed or adapted from slides made

S &, Wl by the author of the paper.

dwallach@cs.rice.edu
Rice University

Presented by: Jamal S. Bajaber
jbajaber@gmu.edu

:| Outline :| Background

= Background

= Pastry Peer-to-peer systems
= System model
= Routing security = Unstructured (Napster, Gnutella)
= Fairne
T?ilrst 59 = Structured (Can, Chord, Pastry, Tapestry)

= Conclusions

:‘ Common issues :‘ Architecture

Event Network ? -
notification storage P2p application layer
= Organize, maintain overlay network
~ Node arrivals
. P2p substrate
- Node failures) A Pastry (self-organizing overlay
= Resource allocation/load balancing network)
= Resource locaton | | T } ------------------------------
= Locality (network proximity) LCl Internet

:‘ Outline

| |

= Pastry

= System model

= Routing security
= Fairness

= Trust

= Conclusions

:‘ Pastry

Generic p2p location and routing substrate

= Self-organizing overlay network
= Consistent hashing

= Lookup/insert object in < /og;¢/V routing
steps (expected)

= O(log N) per-node state
= Network locality heuristics

:| Pastry: Routing

Consistent hashing
128 bit circular id space
nodelds (uniform random)

objIds (uniform random)

Invariant: node with
numerically closest
nodeld

maintains object

i Pastry: Object insertion/lookup

Msg with key X
is routed to live
node with nodeld
closest to X

Problem:
complete routing
table not feasible

:‘ Pastry: Routing

d46aic

Properties
«log16 N steps
« O(log N) state

:‘ Outline

| |

| |

= System model

= Routing security
= Fairness

= Trust

= Conclusions

:‘ System model

= A set of N nodes
= Faulty nodes
> f(osf<1)
» Independent coalition sets
size bounded by cV (1/N< c< f)
» c=f =» most damage to the system
= Static IP address

:‘ System model

= Two types of communication

» Network-level
nodes communicate directly
[Cryptography - to protect from adversaries]

» Overlay-level
Messages are routed through the overlay
[Secure Routing Primitive]
= An adversary has complete control over
network-level communication to and from
nodes it controls

:| Outline

| |

| |

| |

= Routing security
= Fairness

= Trust

= Conclusions

:| Security issues

Peer-to-peer systems

= Structured (Can, Chord, Pastry, Tapestry)
> Application
» File sharing systems

:‘ Security issues

Possible Attacks

Hard attacks
= erroneous responses to a request

application level: returning false data
network level: returning false routes

= traffic analysis
» against systems provide anonymous communication

= Censorship
» against systems provide high availability

:‘ Security issues

Possible Attacks

Other (softer) attacks

= fairness
disk space
network bandwidth
= trust

data
code

:‘ Routing security

= Secure routing ensures:
» the message is eventually delivered
» the message is delivered to all legitimate
replica roots for the key
» the replicas are initially placed on
legitimate replica roots

:‘ Routing security

= Secure routing primitive:

> Must deal with the following problems
1 Secure nodeld assignment
. Secure routing table maintenance
5. Secure message forwarding

:| Node ID assignment

= If you could choose nodelds
maliciously...

» Control/censor all replicas of a document
= Surround it in ID space

» Control all outgoing routes from a node
= Mediate a victim’s access to the network

= Nodelds must be random

:| Simple solution

= Central authority assigns node IDs

» Can also act as a certification authority
= Corporate version: verify user-id / password
= Commercial version: charge money

= Insufficient for small networks
» Attacker could still control large % of nodes(Sybil Attack)
» Moderate the rate at which nodelds are given out

=Small p2p networks must be trusted

:‘ Non-centralized solution?

= Preferable to avoid centralized nodes
» Reliability, “spirit of P2P”, etc.
= Some primitives we might use to build a
solution
» Bit commitment protocols
» Solving hard problems (e.g., crypto puzzles)

:‘ Problems...

= Attacker with lots of {money, CPU time}
can still take over.

= For now, stick with centralized solution.

i Secure routing table maintenance

= routing tables and neighbor sets of
correct nodes should have an average
fraction of only 7 random entries point
to faulty nodes in the entire overlay

= Attackers can increase the fraction
» Locality-based attack

» False routing updates
(more details in Castro et al [OSDI 2002])

:‘ Malicious routing

d46aic

Routing trusts the
intermediate nodes
to be honest.

Malicious routing

L
i I'm the closest
= node!
d46alc

If nodes lie,
routing breaks.

:| Solving malicious routers

= Constrained routing
> Two routing tables per node

» One with locality, one “constrained”

= Harder for attackers to corrupt constrained routing
tables

» First, try the normal route
» If “suspicious”, try
= Diverse routes, using constrained routing table

:‘ Secure message forwarding

A faulty node in the route

~ Dropping messages
» Routing messages to wrong nodes
» Pretend to be the replica root

:‘ Secure message forwarding

Solution

~ Detect faults (failure test)
» the test is not accurate
~ Use divers routes (redundant routing)

» Success (£ <30%)
(more details in Castro et al [OSDI 2002])

:‘ Ejecting misbehaving nodes

= how to remove a malicious node from
the overlay?!

= When a node accuses another of
cheating, how to proof that?!
» to avoid denial of service attack

Open problems!

:‘ Routing security

Secure routing primitive
> huge overhead!

What is the alternative?!

:| self-certifying data

Data whose integrity can be verified by clients

= Use efficient routing to request an object
= Check its integrity
= Integrity check fails / no response

Use secure routning

= Insertion object =>» use secure routing only!

:| Outline

| |

| |

| |

| |

= Fairness

= Trust

= Conclusions

:‘ Fairness

= Goal: fair use of
» network storage
» network bandwidth
= Possible policy
» You can’t use more than you give others

:‘ Storage(Quota Architectures)

Simple quota management
= Centralized server
» Easy to keep policy consistent
» Huge bottleneck
» Single point of failure
= Smart cards
» Quota information is distributed
~ Central issuing organization is required
» Hacked card =» infinite storage

:‘ Storage(Quota Architectures)

Distributed quotas

= Option 1: distributed quota managers
» Comparable to smart card

» Your leaf set maintains your quota records
~ Track nothing and endorse a request

:‘ Storage(Quota Architectures)

Distributed quotas

= Option 2: Economic system
» Nodes publish accounting for storage
~ Incentives to be honest
» Audliting to detect cheaters
~ Punishment for cheating
= Disk space is a lot like money
» Let’s build a disk space economy!

:| A simple disk economy

Local:

Remote:

Remote:

:| Each node tracks storage

Local:

Remote: (8F,)

Local: (A, F,
B (AF))

Remote:

Local: (B,F5)
Local: ¢

Remote: (B,F,)
|

Remote:

B Local: (A,F))
Remote: (C,F,)

Local: (B,F5)
Local: ¢

Remote: (B,F,)
|

Remote:

B Local: (A,F))
Remote: (C,F,)

:‘ Verify quota before storage

c Local: (B,F5)

Local:

Remote: (B,F,)
[

Remote:

B Local: (A,F))
D &= Remote: (C,F,)

What if B lies?

:‘ Lying

= Inflate local list (claim you’re giving more)
= Deflate remote list (claim you’re using less)
~ Both let you use more on the network

= Incentives not to lie?

:| Need anonymous auditing

c Local: (B,F5)

Local:

Remote: (B,F))

Remote:

B Local: (A, F))
Remote: (C,F,)

:| Auditing

= Alice stores file on behalf of Bob
» Alice audits Bob’s remote list

» If Bob isn’t “paying”, Alice can delete the file
= Disincentive to deflate remote list
= Natural economic incentives to follow rules

= How to verify no inflation of the local list?

:‘ Cheating chains

Local: (CF;) B
Remote: (A,F,) 3

Local: (B,F,)
A 2
&2 Remote: (EF))

Local: (A, F
E cal: (A,F))

Remote:

Local:

& ~——Cheating anchor
Remote: (C,F,)

:‘ Eliminating cheating chains

= Random audits will find cheating anchors
» Verify that local books balance
» Verify one level of indirection

= Local/remote list is a signed confession
» Convince leaf set to eject the node

Fairness

Network bandwidth

= Micropayment system
~ Pay a token per a request
» Gain a token when receive a request
= Problems
» Scalability not clear yet
» Checking token validity is more expensive

» Requests may refused
= Nodes had no need for more tokens
= Make widely replicated data

Outline

| |

| |

= Trust

= Conclusions

Trust in P2P Overlays

Data

= The data being shared might not be trustworthy!
= Popularity-based ranking system
~ Need a popularity notion
= Audit logs
= Rank your files
= Ran others files

Trust in P2P Overlays

Code

= applications can perform significant computations
and consume vast amounts of disk storage

= Full privileges to access network and disks
= How trust is the code?!

= Need an architecture to safely execute untrusted
code

Outline

= Conclusions

Conclusions

Routing security
= Secure nodeld assignment
~ Requires trusted authority
~ Easy to build a public key infrastructure
= Secure routing tables
~ Requires diverse routes
~ Can use efficient techniques until suspicious
= Secure message forwarding
» Requires costly techniques
Storage
= Good quotas need interesting primitives
~ “Open” books
~ Anonymous communication
~ Digital signatures
= Economic incentives keep nodes honest
» Random auditing required to detect all cheaters
Network bandwidth
= Fair sharing still need efficient solution
Trust
= Ranking system required to ensure data popularity
= a general-purpose mobile code security architecture is needed to code trust

