Performance of P2P Systems

<u>Outline</u>

- "Performance" article by T. Hong in P2P book
- SOSP articles on Kazaa measurements and and analysis
 - > Acknowledgements: use slides from Gummadi et al's SOSP talk

2

Overview

- Performance
 - > Communication costs (number of hops per query,
 - bandwidth consumption)
 - > Impact of "free riders"
- Fault Tolerance
 - > Impact of node failures
 - Random failures
 - Coordinated/Correlated failures (attack scenario)
- Scalability
 - What happens to performance/fault tolerance as network grows

Small World Model

"It's a small world"

- Milgram's Experiment
 - In 1967, Milgram mailed 160 letters to a set of randomly chosen people in Omaha, Nebraska
 - Goal: pass the letters to a given person in Boston using only intermediaries known to each other on a first-name basis
 - > Result: 42 letters made it through!! Median intermediaries was 5.5
- Do P2P systems like Freenet & Gnutella form a "small world"

P2P Networks and the Small World Model

- P2P Network = Graph with edges corresponding to connections between nodes
- Question 1: Are P2P networks connected graphs?
- Question 2: What is the *characteristic* pathlength of the graph?
 - > Shortest distance between any two nodes averaged over all pairs

Small World Model cont'd

- Watts-Strogatz "Collective Dynamics of Small World Networks", Nature 1998
 - > Explanation for Milgram's Results
- Key Observation: Some individuals are "highly connected" and act as a bridge between clusters of individuals
- Even a small number of bridges can dramatically reduce the path length

Graph Theoretical Background

- Regular graph: ring of n nodes each of which is connected to its k nearest neighbors
- Random graph: nodes connected at random (avg k edges per node)
- Metrics
 - > Path length (averaged over all pairs)
 - Clustering coefficient: given k neighbors of a node, the ratio of the number of edges between the nodes to the maximum number of edges k(k-1)/2

Graph Theoretical Background cont'd

- For a regular graph with n >> k, it can be shown that avg path length = n/2k
 - > If n = 4096, k = 8, avg pathlength = 256
- For a regular graph, lim (cluster coeff) as n goes to infinity is 0.75
- For a random graph, lim(cluster coeff) = k/n = 0 as n goes to infinity
- For a random graph, path length = log n/log k
 If n = 4096, k = 8, pathlength = 4, clustering coeff = 0.0002

Watts-Strogatz experiment

- Starting with a 1000 node random graph, k = 10, for each edge reconnect it to a random vertex with probability p
 - > If p = 0, regular graph
 - > If p = 1, random graph
 - > What happens if 0 < p < 1?
- □ As p increases, clustering remains high but path length drops dramatically
- □ If high clustering and short pathlength, then graph is a small world graph

<u>Two implications of Watts-Strogatz</u> experiment

- Only a small amount of "rewiring" is needed for a regular graph to turn into a small world graph
- The transition is not noticeable at the local level

Freenet

- □ Is Freenet network connected?
 - > Yes
 - Each node connects to a connected network
 - Redundant links added while processing queries and inserts
 - > But what about node failures?
- □ Is Freenet a small world network?

Simulation

Configuration

- > 1000 identical nodes
- Capacity of 50 data items + 200 additional references
- > Each node connects to two nodes numerically before and after it
- Initial characteristics
 - Path length = 125

11

> Clustering coefficient = 0.5

12

Freenet Simulation cont'd

Experiment 1

- At each time step, pick a random node and do a random request/insert with hops-to-live = 20
- Observation: path length and clustering coefficient evolve into a small world network
- Experiment 2
 - > Every 100 time steps, simulate 300 requests from randomly selected nodes (hops to live = 500)

 - > Observations
 - Median path length drops from 500 to 6
 - Still some requests can take a long time

Freenet simulation cont'd

Experiment 3

- What is the impact of Freenet routing on median path length?
- > If random routing used, median pathlength is around 50
- □ Experiment 4:

13

15

> Simulating growth

- o Start with 20 nodes, add a new node every 5 time steps until the network has 1000 nodes
- o Connect new node to a random existing node, send announcement with hops to live = 10
- o Insert requests, probes as in earlier experiments
- > Observations: network evolves into a small world network • Characteristic pathlength = 2.2. Clustering coefficient =

14

16

0.25, median request path length = 5

Freenet simulation: Fault tolerance

Experiment 1: Remove nodes at random

- > Observation: Median pathlength below 20 when up to 30% of the nodes fail
- □ Experiment 2: Remove most connected nodes first
 - > Observation: Median pathlength > 20 at 18% failure level

Link distribution in Freenet

- Link distribution in Freenet is scale-free
 - log p = k log L + b
 - where p = fraction of nodes and L = number of links per node

 $p = A L^{-k}$

- Relationship between p and L does not depend on N (number of nodes in the network)
- Small world networks have been shown to have scalefree link distributions

Other Observations

Impact of Freeriders

- Freenet ignores freeriders because if node does not provide files, no nodes will have references to it
- No impact on path length
- > However, requests will add to the bandwidth load

Scalability

> In small world graphs, characteristic path length follows random graph properties, i.e. it is log n/ log k

<u>Gnutella</u>

17

19

- Queries are broadcast, so no small world effect
- But we can examine path length, link distribution, etc as in Freenet simulation
- Gnutella network modeled as a random graph with k = 3
- Similar experiments as Freenet simulation

18

20

> 1000 nodes, 1500 edges (k = 3), 2500 data items, 300 queries

Simulation Observations

- Query performance
 - > Query pathlength = characteristic pathlength
 - > BFS leads to optimal paths and better worstcase
 - performance than Freenet
 - Number of nodes contacted per query much larger than Freenet
- Fault tolerance
 - > Number of highly connected links not a factor in Gnutella
 - > Targeted attack scenario: Gnutella does better
 - > Random attack scenario: Freenet does better
- Gnutella vulnerable to free riders because a node cannot distinguish a free rider from other nodes
- Scalability: characteristic pathlength scales logarithmically but bandwidth usage scales linearly

Measurement, Modeling and Analysis of a Peer-to-Peer File-Sharing Workload

Krishna Gummadi, Richard Dunn, Stefan Saroiu Steve Gribble, Hank Levy, John Zahorjan

> Department of Computer Science and Engineering University of Washington Seattle, WA

Explosive growth of P2P file-sharing systems > now the dominant source of Internet traffic

- its workload consists of large multimedia (audio,
- video) files

□ P2P file-sharing is very different than the Web

- > in terms of both workload and infrastructure
- we understand the dynamics of the Web, but the dynamics of P2P are largely unknown

This talk

21

23

Multimedia workloads

- > what files are being exchanged
- > goal: to identify the forces driving the workload and understand the potential impacts of future changes in them

P2P delivery infrastructure

- how the files are being exchanged
- goal: to understand the behavior of Kazaa peers, and derive implications for P2P as a delivery infrastructure

Kazaa: Quick Overview

- Peers are individually owned computers
 - > most connected by modems or broadband
 - no centralized components
- Two-level structure: some peers are "supernodes"
 - > super-nodes index content from peers underneath
 - files transferred in segments from multiple peers simultaneously
- □ The protocol is proprietary

Methodology

- Capture a 6-month long trace of Kazaa traffic at UW
 - > trace gathered from May 28th December 17th, 2002

passively observe all objects flowing into UW campus
 classify based on port numbers and HTTP headers
 anonymize sensitive data before writing to disk

- Limitations:
 - > only studied one population (UW)
 - > could see data transfers, but not encrypted control traffic
 - cannot see internal Kazaa traffic

start date	May 28th, 2002
end date	December 17th, 2002
trace length	203 days, 5 hours, 6 minutes
# of requests	1,640,912
# of transactions	98,997,622
# of unsuccessful transactions	65,505,165 (66.2%)
# of clients	24,578
# of unique objects	633,106 (totaling 8.85TB)
bytes transferred	22.72TB
content demanded	43.87TB

Trace Characteristics

Outline

Introduction

- Some observations about Kazaa
- A model for studying multimedia workloads
- □Locality-aware P2P request distribution

26

□ Conclusions

Kazaa objects are immutable

□ The Web is driven by object change

- > users revisit popular sites, as their content changes
- rate of change limits Web cache effectiveness [Wolman 99]
- □ In contrast, Kazaa objects never change
 - as a result, users rarely re-download the same object
 - o 94% of the time, a user fetches an object at-most-once o 99% of the time, a user fetches an object at-most-twice

29

- implications:
 - # requests to popular objects bounded by user population size

Kazaa popularity has high turnover

Popularity is short lived

- only 5% of the top-100 audio objects stayed in the top-100 over our entire trace [video: 44%]
- Newly popular objects tend to be recently born
 - of audio objects that "broke into" the top-100, 79% were born a month before becoming popular [video: 84%]

<u>Outline</u>

- □ Introduction
- □ Some observations about Kazaa
- A model for studying multimedia workloads
- □Locality-aware P2P request distribution

34

36

□ Conclusions

Model basics

- 1. Objects are chosen from an underlying Zipf curve
- But we enforce "fetch-at-most-once" behavior
 when a user picks an object, it is removed from her distribution
- 3. Fold in user, object dynamics
 - > new objects inserted with initial popularity drawn from Zipf
 - o new popular objects displace the old popular objects
 - > new users begin with a fresh Zipf curve

Model parameters

С	# of clients	1,000
0	# of objects	40,000
_R	client req. rate	2 objs/day
-	Zipf param driving obj. popularity	1.0
P(x)	prob. client req. object of pop	Zipf (1.0) +
	rank x	fetch-at-most-once
A(x)	prob. of new object inserted at pop rank x	Zipf (1.0)
М	cache size (frac. of obj)	varies
_0	object arrival rate	varies
6	client arrival rate	varies

Outline

- Introduction
- □ Some observations about Kazaa
- A model for studying multimedia workloads
- □ Locality-aware P2P request distribution

42

□ Conclusions

Conclusions

- P2P file-sharing driven by different forces than the Web
- Multimedia workloads:
 - > driven by 2 factors: fetch-at-most-once, object/user dynamics
 > constructed a model that explains non-zipf behavior and validated it
- P2P infrastructure:
 - > current file-sharing architectures miss opportunity
 - > locality-aware architectures can save significant bandwidth

47

> a challenge for P2P: eliminating unavailable misses