
1

1

GIA: Making Gnutella-like P2P Systems
Scalable

Yatin Chawathe, Sylvia Ratnasamy, Lee
Breslau, Scott Shenker, and Nick Lanham

SIGCOMM 2003

2

Acknowledgements

Most of the followings slides are borrowed from the
talk by Yatin Chawathe (Intel)

3

The Peer-to-peer Phenomenon

 Internet-scale distributed system
 Distributed file-sharing applications
 E.g., Napster, Gnutella, KaZaA

 File sharing is the dominant P2P app
 Mass-market

 Mostly music, some video, software

4

The Problem

 Potentially millions of users
 Wide range of heterogeneity
 Large transient user population

 Existing search solutions cannot scale
 Flooding-based solutions limit capacity
 Distributed Hash Tables (DHTs) not necessarily

appropriate

2

5

Why Not DHTs

 Structured solution
 Given a filename, find its location

 Can DHTs do file sharing?
 Probably, but with lots of extra work:

Caching, keyword searching
 Do we need DHTs?

 Not necessarily: Great at finding rare files, but
most queries are for popular files

Note: Not questioning the utility of Note: Not questioning the utility of DHTs DHTs in general, in general,
merely for mass-market file sharingmerely for mass-market file sharing 6

Why Not DHTs

 Structured solution
 Given a filename, find its location
 Tightly controlled topology & file placement

 Unsuitable for file-sharing
 Transient clients cause overhead
 Poorly suited for keyword searches
 Can find rare files, but that may not matter

Note: Not questioning the utility of Note: Not questioning the utility of DHTs DHTs in general, in general,
merely for mass-market file sharingmerely for mass-market file sharing

7

Proposed Solution: GIA

 Unstructured, but take node capacity into
account
 High-capacity nodes have room for more

queries: so, send most queries to them

 Will work only if high-capacity nodes:
 Have correspondingly more answers, and
 Are easily reachable from other nodes

8

 Make high-capacity nodes easily reachable
 Dynamic topology adaptation

 Make high-capacity nodes have more answers
 One-hop replication

 Search efficiently
 Biased random walks

 Prevent overloaded nodes
 Active flow control

 Make high-capacity nodes easily reachable
 Dynamic topology adaptation

 Make high-capacity nodes have more answers
 One-hop replication

 Search efficiently
 Biased random walks

 Prevent overloaded nodes
 Active flow control

GIA Design

Query

3

9

Dynamic Topology Adaptation

 Make high-capacity nodes have high degree (i.e.,
more neighbors)

 Per-node level of satisfaction, S:
 0 ⇒ no neighbors, 1 ⇒ enough neighbors
 Function of:

o Node’s capacity, Neighbors’ capacities, Neighbors’ degrees
o Sum of neighbors capacities (normalized by their degrees)

divided by the node’s own capacity
o Intuition: a node with capacity C will forward C queries per

unit time at full load and needs enough capacity from all its
neighbors to be able to handle that load

 When S << 1, look for neighbors aggressively

10

Dynamic Topology Adaptation (cont’d)

 Each node keeps a host cache populated with
nodes it knows about or discovers

 If S < 1, then it tries to add nodes from its host
cache to its neighbor list
 If number of neighbors reaches a maximum level, then

some current neighbor has to be dropped to make room
for the new neighbor

 If the new neighbor has higher capacity than an existing
neighbor then it is added

 O/w, the new node is added if it has a lower degree than
the current neighbor with the highest degree

o Neighbor with highest degree has least to lose if it is
dropped

11

Flow Control

 Active flow control
 Senders are allowed to direct queries to a neighbor only

if that neighbor has notified the sender that it is willing
to accept queries from the sender

 Each GIA client periodically assigns flow-control tokens
to its neighbors

o Each token represents a single query
o Tokens assigned using Start-time Fair Queuing (a

proportional-share scheduling algorithm)
o Neighbors assigned tokens in proportion to their advertised

capacity

12

Other Design Features

 One-hop replication
 Each node actively maintains an index of the content of

all its neighbors

 Search algorithm
 Biased random walk
 A node forwards a query to the highest capacity

neighbor for which it has flow control tokens
o If no tokens, query is queued until tokens arrive

 TTLs used to bound the duration of the random walk and
book-keeping techniques to avoid redundant paths (unique
GUID per query + query history)

 Query duration also bounded by MAX_RESPONSES
parameter

4

13

Other Design Features (cont’d)

 Query resilience
 Drawbacks of random walk: if a node dies before it has

forwarded a query, the query will be lost
 GIA relies on query keep-alive messages to address this

issue
 Query responses serve as implicit keep-alive messages
 If a query is forwarded several times without any

responses, an explicit keep-alive message is sent to the
originator, who can reissue the query

14

Simulation Results

 Compare four systems
 FLOOD: TTL-scoped, random topologies
 RWRT: Random walks, random topologies
 SUPER: Supernode-based search
 GIA: search using GIA protocol suite

 Metric:
 Collapse point: aggregate throughput that the

system can sustain

15

Questions

 What is the relative performance of the
four algorithms?

 Which of the GIA components matters the
most?

 How does the system behave in the face of
transient nodes?

16

System Performance

0.00001

0.001

0.1

10

1000

0.01 0.1 1
Replication Rate (percentage)

C
o

ll
a
p

s
e
 P

o
in

t
(q

p
s
/n

o
d

e
) GIA: N=10,000

SUPER: N=10,000

RWRT: N=10,000

FLOOD: N=10,000

GIA outperforms SUPER, RWRT & FLOOD by many GIA outperforms SUPER, RWRT & FLOOD by many
orders of magnitude in terms of aggregate query loadorders of magnitude in terms of aggregate query load

% % %

5

17

Factor Analysis

0.0006RWRT+FLWCTL

0.001RWRT+TADAPT

0.0015RWRT+BIAS

0.005RWRT+OHR

0.0005RWRT

Collapse
point

Algorithm

2GIA – FLWCTL

0.2GIA – TADAPT

6GIA – BIAS

0.004GIA – OHR

7GIA

Collapse
point

Algorithm

No single component is useful by itself; the No single component is useful by itself; the
combinationcombination of all of them is what makes GIA scalable of all of them is what makes GIA scalable

18

Factor Analysis

RWRT
0.0005

+ OHR
0.005

+ BIAS
0.0015

+ TADAPT
0.001

+ FLOWCTL
0.0006

GIA
7

– OHR
0.004

– BIAS
6

– TADAPT
0.2

– FLOWCTL
2

No single component is useful by itself; the No single component is useful by itself; the
combinationcombination of all of them is what makes GIA scalable of all of them is what makes GIA scalable

19

Transient Behavior

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000
Per-node max-lifetime (seconds)

C
o

ll
a
p

s
e
 p

o
in

t
(q

p
s
/n

o
d

e
)

replication rate = 1.0%

replication rate = 0.5%

replication rate = 0.1%

Static SUPER

Static RWRT (1% repl)

Even under heavy churn GIA outperforms the otherEven under heavy churn GIA outperforms the other
algorithms by many orders of magnitudealgorithms by many orders of magnitude

20

Summary

 GIA: scalable Gnutella
 3–5 orders of magnitude improvement in system

capacity

 Unstructured approach is good enough!
 DHTs may be overkill
 Incremental changes to deployed systems

 Status: Prototype implementation deployed
on PlanetLab

