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The Peer-to-peer Phenomenon

O Internet-scale distributed system
> Distributed file-sharing applications
» E.g., Napster, Gnutella, KaZaA
Q File sharing is the dominant P2P app
Q Mass-market
> Mostly music, some video, software

The Problem

O Potentially millions of users
> Wide range of heterogeneity
> Large transient user population

O Existing search solutions cannot scale
> Flooding-based solutions limit capacity

> Distributed Hash Tables (DHTs) not necessarily
appropriate
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Why Not DHTs

Q Structured solution
> Given a filename, find its location
0 Can DHTSs do file sharing?

> Probably, but with lots of extra work:
Caching, keyword searching

0 Do we need DHTs?

> Not necessarily: 6reat at finding rare files, but
most queries are for popular files

Note: Not questioning the utility of DHTs in general,

merely for mass-market file sharing

Why Not DHTs

Q Structured solution

> Given a filename, find its location

> Tightly controlled topology & file placement
0 Unsuitable for file-sharing

> Transient clients cause overhead

> Poorly suited for keyword searches

> Can find rare files, but that may not matter

Note: Not questioning the utility of DHTs in general,
merely for mass-market file sharing

Proposed Solution: GTA

0 Unstructured, but take node capacity into
account

» High-capacity nodes have room for more
queries: so, send most queries to them

Q Will work only if high-capacity nodes:
> Have correspondingly more answers, and
> Are easily reachable from other nodes

GIA Design

0 Make high-capacity nodes easily reachable
> Dynamic topology adaptation

0 Make high-capacity nodes have more answers
> One-hop replication

0 Search efficiently
> Biased random walks

Q Prevent overloaded nodes
> Active flow control




Dynamic Topology Adaptation

0 Make high-capacity nodes have high degree (i.e.,
more heighbors)

O Per-node level of satisfaction, S:
» 0= no neighbors, 1 = enough neighbors
» Function of:
o Node's capacity, Neighbors' capacities, Neighbors' degrees
o Sum of neighbors capacities (normalized by their degrees)
divided by the node's own capacity
o Intuition: a node with capacity C will forward C queries per
unit time at full load and needs enough capacity from all its
neighbors to be able to handle that load

> When S << 1, look for neighbors aggressively

Dynamic Topology Adaptation (cont'd)

0 Each node keeps a host cache populated with
nodes it knows about or discovers

0 If S <1, then it tries to add nodes from its host
cache to its neighbor list

> If number of neighbors reaches a maximum level, then
some current neighbor has to be dropped to make room
for the new neighbor

» If the new neighbor has higher capacity than an existing
neighbor then it is added

» O/w, the new node is added if it has a lower degree than
the current neighbor with the highest degree

o Neighbor with highest degree has least fo lose if it is
dropped

Flow Control

0 Active flow control
» Senders are allowed to direct queries to a neighbor only
if that neighbor has notified the sender that it is willing
to accept queries from the sender
» Each GIA client periodically assigns flow-control tokens
to its neighbors
o Each token represents a single query
o Tokens assigned using Start-time Fair Queuing (a
proportional-share scheduling algorithm)

o Neighbors assigned tokens in proportion to their advertised
capacity

Other Design Features

0 One-hop replication
» Each node actively maintains an index of the content of
all its neighbors
0 Search algorithm
> Biased random walk
» A node forwards a query fo the highest capacity
neighbor for which it has flow control tokens
o If no tokens, query is queued until tokens arrive
> TTLs used to bound the duration of the random walk and
book-keeping techniques to avoid redundant paths (unique
GUID per query + query history)
> Query duration also bounded by MAX_RESPONSES
parameter




Other Design Features (cont'd)

0 Query resilience

» Drawbacks of random walk: if a node dies before it has
forwarded a query, the query will be lost

» GIA relies on query keep-alive messages to address this
issue

> Query responses serve as implicit keep-alive messages

» If aquery is forwarded several times without any
responses, an explicit keep-alive message is sent to the
originator, who can reissue the query

Simulation Results

0 Compare four systems
> FLOOD: TTL-scoped, random topologies
> RWRT: Random walks, random topologies
» SUPER: Supernode-based search
» GIA: search using GIA protocol suite

Q Meftric:

> Collapse point: aggregate throughput that the
system can sustain

Questions

0 What is the relative performance of the
four algorithms?

0 Which of the GIA components matters the
most?

0 How does the system behave in the face of
transient nodes?

System Performance
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GIA outperforms SUPER, RWRT & FLOOD by many

orders of magnitude in terms of aggregate query load




Factor Analysis

Algorithm Collapse Algorithm Collapse
point point
RWRT 0.0005 GIA 7
RWRT+OHR 0.005 GIA - OHR 0.004
RWRT+BIAS 0.0015 GIA - BIAS 6
RWRT+TADAPT 0.001 GIA - TADAPT 02
RWRT+FLWCTL 0.0006 6IA - FLWCTL 2

No single component is useful by itself; the
combination of all of them is what makes GIA scalable

17

Factor Analysis
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No single component is useful by itself; the
combination of all of them is what makes GIA scalable
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Transient Behavior
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Even under heavy churn GIA outperforms the other
algorithms by many orders of magnitude
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Summary

0 GIA: scalable Gnutella
> 3-b orders of magnitude improvement in system
capacity
0 Unstructured approach is good enough!
> DHTs may be overkill
» Incremental changes to deployed systems
Q Status: Prototype implementation deployed
on PlanetLab




