GIA: Making Gnutella-like P2P Systems

Scalable

Yatin Chawathe, Sylvia Ratnasamy, Lee
Breslau, Scott Shenker, and Nick Lanham

SIGCOMM 2003

Acknowledgements

Most of the followings slides are borrowed from the
talk by Yatin Chawathe (Intel)

The Peer-to-peer Phenomenon

O Internet-scale distributed system
> Distributed file-sharing applications
» E.g., Napster, Gnutella, KaZaA
Q File sharing is the dominant P2P app
Q Mass-market
> Mostly music, some video, software

The Problem

O Potentially millions of users
> Wide range of heterogeneity
> Large transient user population

O Existing search solutions cannot scale
> Flooding-based solutions limit capacity

> Distributed Hash Tables (DHTs) not necessarily
appropriate

l\)

Why Not DHTs

Q Structured solution
> Given a filename, find its location
0 Can DHTSs do file sharing?

> Probably, but with lots of extra work:
Caching, keyword searching

0 Do we need DHTs?

> Not necessarily: 6reat at finding rare files, but
most queries are for popular files

Note: Not questioning the utility of DHTs in general,

merely for mass-market file sharing

Why Not DHTs

Q Structured solution

> Given a filename, find its location

> Tightly controlled topology & file placement
0 Unsuitable for file-sharing

> Transient clients cause overhead

> Poorly suited for keyword searches

> Can find rare files, but that may not matter

Note: Not questioning the utility of DHTs in general,
merely for mass-market file sharing

Proposed Solution: GTA

0 Unstructured, but take node capacity into
account

» High-capacity nodes have room for more
queries: so, send most queries to them

Q Will work only if high-capacity nodes:
> Have correspondingly more answers, and
> Are easily reachable from other nodes

GIA Design

0 Make high-capacity nodes easily reachable
> Dynamic topology adaptation

0 Make high-capacity nodes have more answers
> One-hop replication

0 Search efficiently
> Biased random walks

Q Prevent overloaded nodes
> Active flow control

Dynamic Topology Adaptation

0 Make high-capacity nodes have high degree (i.e.,
more heighbors)

O Per-node level of satisfaction, S:
» 0= no neighbors, 1 = enough neighbors
» Function of:
o Node's capacity, Neighbors' capacities, Neighbors' degrees
o Sum of neighbors capacities (normalized by their degrees)
divided by the node's own capacity
o Intuition: a node with capacity C will forward C queries per
unit time at full load and needs enough capacity from all its
neighbors to be able to handle that load

> When S << 1, look for neighbors aggressively

Dynamic Topology Adaptation (cont'd)

0 Each node keeps a host cache populated with
nodes it knows about or discovers

0 If S <1, then it tries to add nodes from its host
cache to its neighbor list

> If number of neighbors reaches a maximum level, then
some current neighbor has to be dropped to make room
for the new neighbor

» If the new neighbor has higher capacity than an existing
neighbor then it is added

» O/w, the new node is added if it has a lower degree than
the current neighbor with the highest degree

o Neighbor with highest degree has least fo lose if it is
dropped

Flow Control

0 Active flow control
» Senders are allowed to direct queries to a neighbor only
if that neighbor has notified the sender that it is willing
to accept queries from the sender
» Each GIA client periodically assigns flow-control tokens
to its neighbors
o Each token represents a single query
o Tokens assigned using Start-time Fair Queuing (a
proportional-share scheduling algorithm)

o Neighbors assigned tokens in proportion to their advertised
capacity

Other Design Features

0 One-hop replication
» Each node actively maintains an index of the content of
all its neighbors
0 Search algorithm
> Biased random walk
» A node forwards a query fo the highest capacity
neighbor for which it has flow control tokens
o If no tokens, query is queued until tokens arrive
> TTLs used to bound the duration of the random walk and
book-keeping techniques to avoid redundant paths (unique
GUID per query + query history)
> Query duration also bounded by MAX_RESPONSES
parameter

Other Design Features (cont'd)

0 Query resilience

» Drawbacks of random walk: if a node dies before it has
forwarded a query, the query will be lost

» GIA relies on query keep-alive messages to address this
issue

> Query responses serve as implicit keep-alive messages

» If aquery is forwarded several times without any
responses, an explicit keep-alive message is sent to the
originator, who can reissue the query

Simulation Results

0 Compare four systems
> FLOOD: TTL-scoped, random topologies
> RWRT: Random walks, random topologies
» SUPER: Supernode-based search
» GIA: search using GIA protocol suite

Q Meftric:

> Collapse point: aggregate throughput that the
system can sustain

Questions

0 What is the relative performance of the
four algorithms?

0 Which of the GIA components matters the
most?

0 How does the system behave in the face of
transient nodes?

System Performance

1000
) —+ GIA: N=10,000
T
o -< SUPER: N=10,000
£ 10 4
3 -= RWRT: N=10,000
o FLOOD: N=10,000
£ 0.1
K
o -
@ 0.001 . T
o
= - ‘
So.00001 4 ; |

0.01 * 0.1 % 1%

Danli. H Daén [\

GIA outperforms SUPER, RWRT & FLOOD by many

orders of magnitude in terms of aggregate query load

Factor Analysis

Algorithm Collapse Algorithm Collapse
point point
RWRT 0.0005 GIA 7
RWRT+OHR 0.005 GIA - OHR 0.004
RWRT+BIAS 0.0015 GIA - BIAS 6
RWRT+TADAPT 0.001 GIA - TADAPT 02
RWRT+FLWCTL 0.0006 6IA - FLWCTL 2

No single component is useful by itself; the
combination of all of them is what makes GIA scalable

17

Factor Analysis

+ TADAPT — TADAPT
0.001 0.2

+ OHR R + BIAS —OHR GIA —BIAS
0.005 0.00 0.0015 0.004 7 6

WRT
0005
+ FLOWCTL — FLOWCTL
0.0006 2
No single component is useful by itself; the
combination of all of them is what makes GIA scalable

18

Transient Behavior

1000
100
10 4

—replication rate = 1.0%
-=-replication rate = 0.5%
- replication rate = 0.1%

[\Static SUPER

Collapse point
(qps/node)

e o

o ¢

= 4o
. L

*_static RWRT (1% repl)
0.001 T T
10 100 1000 10000

Dar-nnda mav_lifatima lcarandec)

Even under heavy churn GIA outperforms the other
algorithms by many orders of magnitude

19

Summary

0 GIA: scalable Gnutella
> 3-b orders of magnitude improvement in system
capacity
0 Unstructured approach is good enough!
> DHTs may be overkill
» Incremental changes to deployed systems
Q Status: Prototype implementation deployed
on PlanetLab

