
1

1

Peer to Peer File Storage Systems

CS 699

2

Acknowledgements

Some of the followings slides are borrowed from a talk by Robert
Morris (MIT)

3

P2P File Systems

 File Sharing is one of the most popular P2P
applications
 E.g. Music sharing ala Napster, Gnutella, etc.
 Anonymous storage

 Many P2P file systems built on top of DHTs
 Freenet (anonymity)
 PAST

o Whole file storage
o On top of PASTRY

 CFS
o Block-oriented
o On top of Chord

4

Target Uses

 Serving data with inexpensive hosts:
 open-source distributions
 off-site backups
 tech report archive
 efficient sharing of music

node

node
node

node

Internet

node

2

5

How to mirror open-source distributions?
 Multiple independent distributions

 Each has high peak load, low average

 Individual servers are wasteful
 Solution: aggregate

 Option 1: single powerful server
 Option 2: distributed service

o But how do you find the data?

6

Some Design Challenges
 Scalability
 Avoid hot spots
 Spread storage burden evenly
 High availability

 Tolerate unreliable participants

 Anonymity
 Security

7

Freenet: A Distributed Anonymous
Information Storage & Retrieval

System

Ian Clarke et al

8

Freenet: Design Goals

 Location-independent (wide area) distributed file
system

 Goals
 Anonymity for producers and consumers of information
 Deniability for storers of information
 Resistance to attempts by third parties to deny access

to information
 Efficient dynamic storage and routing of information
 Decentralization of all network functions

3

9

Architecture

 Overlay network of nodes that store files
 Files are identified by location-independent keys
 Queries routed via steepest-ascent hill-climbing

search with backtracking
 Transparent lazy replication
 Files are encrypted for deniability
 Anonymity: requesters and inserters of files

cannot be identified since a node in a request path
cannot tell whether its predecessor initiated the
request or is forwarding it

10

Keys and Searching (1)
 Each file has a unique file key obtained by using the 160-bit

SHA-1 hash function
 Three types of keys

 Keyword-signed Key (KSK):
o generate public/private key pair from descriptive text, e.g.

gmu/cs/it818/lec2; apply SHA-1 to public key to get file key;
private half of key used to sign the file

o Problems: flat global name space, “key-squatting”
 Signed-Subspace Key (SSK)

o User randomly generates a public/private key pair for her
namespace, hashes public namespace key and descriptive string
separately, XORs them, hashes the result to obtain file key; private
key used to sign file

o Knowing public key of namespace and descriptive text enable users
to compute file key

o Can create a hierarchical file structure using SSKs

11

Keys and Searching (2)

 Third type of key
 Content-hash key (CHK)

o Derived by hashing the contents of the file

 CHKs used in conjunction with SSKs for implementing
updating and splitting of files
 User stores a file under its CHK
 User stores an indirect file (with a SSK) whose contents are

the CHK
 File can be retrieved in two steps if SSK is known
 The indirect file is updated by the owner with the new CHK if

the file is updated
 The indirect file can contain the CHKs of the parts of a large

file that are split up and stored separately

12

Retrieving Data
 File request = Key Request
 Each node maintains a routing table with (key, node) entries
Node receiving request checks its own store for key

1. if key found, returns file + note saying it is the data source
2. If key not found, looks up “lexicographically closest” key in

routing table to requested key and forwards the request to the
corresponding node

3. If data returned, passes the data back to the original requestor,
caches a copy of the data, creates a new entry in routing table
associating data source with requested key

4. If node cannot forward request because downstream node is
down, the second nearest key is tried and so on… when it runs out
of candidates, it reports a failure to upstream neighbor, who
then tries its second choice, etc.

5. If hops to live exceeded, failure is reported

4

Routing Algorithm: search or insert

AA

BB CC

DD

InitiatorInitiator

14

Routing algorithm

 Each node makes a copy of data file
 Transparent data replication
 File cached close to requestors – locality

 Nodes make new entries for previously unknown
nodes that supply files
 Increases connectivity

 Nodes will tend to become specialized in clusters
of files with similar keys
 Improves efficiency of future requests
 Lexicographic similarity has no correlation to descriptive

strings of a file or to file contents

15

Inserts

 Inserts follow same algorithm as searches
 If a node receiving an insert request has an old

version of the file (with the same key), it returns
the pre-existing file as if a request was made –
this enables detection of collisions

 Once path for insert established, inserter sends
the data which is propagated along path and also
stored at each node along the way

16

Security Issues

 Anonymity:
 Any node along the way for an insert or search

can replace the data source field to claim itself
or any arbitrary node as the source

 Messages do not automatically terminate after
hops-to-live = 1 but are forwarded with finite
probability

 Deniability:
 All files are encrypted; storer does not know

encryption key

5

17

Performance

 Simulation study
 Metrics

 Network convergence: how much time for the
pathlengths to come down to acceptable levels?

 Scalability: how does pathlength grow as
network size increases

 Fault tolerance: how does pathlength evolve as
nodes fail

 Small-world model applicable?

18

PAST: A Large-scale, persistent peer-
to-peer storage utility

A. Rowstron & P. Druschel
SOSP 2001

19

Overview

 Peer-to-peer storage utility
 Similar to Oceanstore, Freenet, CFS

 PAST nodes form a self-organizing overlay
network
 PASTRY used as routing layer (similar to Tapestry)

 Nodes can insert or retrieve files and (optionally)
contribute storage

 Replication used for additional reliability; caching
and locality for performance

20

PASTRY

 Based on Plaxton mesh like Tapestry with some
differences

 Prefix routing with one digit resolved at each
step
 NodeIds and fileIds are sequences of digits with base 2b

 O(log 2b N) steps
 Routing table

o log 2b N levels each with 2b-1 entries
o Leaf set – L numerically closest nodeids (L/2 larger, L/2

smaller)
o Neighborhood set – L closest nodes based on proximity

metric - (this set is valuable in obtaining routing info from
nodes that are closeby)

6

21

PAST Operations
1. Fileid = Insert(name, owner-credentials, k, file)

 Fileid (160 bits) is SHA-1 hash of file name, owner’s public key, and a
random salt

 Stores a file at k nodes in the PAST network whose nodeids are numerically
closest to the 128 most significant bits of fileId
o PAST nodes have 128-bit ids generated by a hash of the node’s public key or IP

address
 Owner credentials = file certificate containing file metadata signed with

owner’s private key
 Once all k nodes closest to fileid have accepted the file, an

acknowledgement returned to client to which each of the k nodes attaches
a store receipt

2. File = lookup(fileid)
 Retrieves the file from one of the k nodes with a copy (normally from the

closest such node)
3. Reclaim(fileId,owner-credentials)

 Reclaims the storage occupied by k copies of the file
 Weaker semantics than delete – does not guarantee that the file is no

longer available
22

Security

 Each PAST node and user hold a smart card with a
public/private key pair

 Smart cards generate and verify certificates
ensuring the integrity of fileid and nodeid
assignments
 Assume smart cards are tamper-proof

 Store receipts, file certificates, reclaim
certificates ensure integrity and authenticity of
stored content

 Pastry routing scheme
 All messages are signed, preventing forged entries
 Routing is redundant, etc….

23

Storage Management
 Storage imbalance arises from

 Statistical variation in assignment of nodeids and fileids
 Size distribution of inserted files may have large variance
 Storage capacity of individual nodes differs

o Assume no more than two orders of magnitude difference

 Goals
 Balance the remaining free storage space among nodes as

storage space utilization nears 100%
 Maintain the invariant that copies of the file are stored at the

k nodes closest to fileId
 Techniques

 Replica diversion
 File diversion

24

Replica Diversion

 If one of the k closest nodes (say A) cannot
accommodate a copy of a file, one of the nodes in
its leaf set (say B) that is not among the k closest
is used to store a replica
 A makes an entry in its file table with a pointer to B, and

returns a store receipt as usual

 Need to ensure that
 Failure of node B causes the creation of a new replica

o Under the PASTRY protocol, nodes keep track of live and
failed nodes in their leaf set

 Failure of node A does not render replica on B
inaccessible

o Achieved by entering a pointer to B on C, the k+1 th closest
nodeid to fileid

7

25

Replica diversion cont’d
 Policies

1. Reject a replica if file_size/free_space > t
 Nodes among k closest (primary replica stores) use a

larger threshold t than diverted replica stores
2. How to chose node for diverted replica?

 Select a node with maximal remaining free space among
nodes in the leaf set of a primary store node, have a
nodeId that is not among k closest, and does not already
have a diverted copy

3. When to divert the entire file to another part of the
nodeId space?
 If a primary store rejects the replica, and the node it

then selects for the diverted replica also rejects it, the
entire file is diverted

26

Other issues

 File diversion
 On failure, client generates a new fileid and

tries again (three times before giving up)

 File encoding
 Caching

 A file that is routed through a node keeps a
cached copy if its size is less than a fraction c
of its current cache size

 Greedy-dual-size cache replacement

27

Experimental Results

 Able to achieve global storage utilization >
98%

 Failed file insertions remains below 5% at
95% utilization and biased towards large
files

 Caching is effective in achieving load
balancing and reduces fetch distance and
network traffic

28

Wide-Area Cooperative Storage with CFS

Robert Morris
Frank Dabek, M. Frans Kaashoek,

David Karger, Ion Stoica

MIT and Berkeley

8

29

Design Challenges
 Avoid hot spots
 Spread storage burden evenly
 Tolerate unreliable participants
 Fetch speed comparable to whole-file TCP
 Avoid O(#participants) algorithms

 Centralized mechanisms [Napster], broadcasts [Gnutella]

 CFS solves these challenges

30

CFS Architecture

 Each node is a client and a server (like xFS)
 Clients can support different interfaces

 File system interface
 Music key-word search (like Napster and Gnutella)

node

client server

node

clientserver
Internet

31

Client-server interface

 Files have unique names
 Files are read-only (single writer, many readers)
 Publishers split files into blocks
 Clients check files for authenticity [SFSRO]

FS Client server
Insert file f

Lookup file f

Insert block

Lookup block

node

server

node

32

Server Structure

• DHash stores, balances, replicates, caches blocks

• DHash uses Chord [SIGCOMM 2001] to locate blocks

DHash

Chord

Node 1 Node 2

DHash

Chord

9

33

Chord Hashes a Block ID to its Successor

N32

N10

N100

N80

N60

Circular
ID Space

• Nodes and blocks have randomly distributed IDs
• Successor: node with next highest ID

B33, B40, B52

B11, B30

B112, B120, …, B10

B65, B70

B100

Block ID Node ID

34

Basic Lookup

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is block 70?”

“N80”

• Lookups find the ID’s predecessor
• Correct if successors are correct

35

Successor Lists Ensure Robust Lookup

N32

N10

N5

N20

N110

N99

N80

N60

• Each node stores r successors, r = 2 log N
• Lookup can skip over dead nodes to find blocks

N40

10, 20, 32

20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99

80, 99, 110

99, 110, 5

110, 5, 10

5, 10, 20

36

Chord Finger Table Allows O(log N) Lookups

N80

__

1/8

1/16
1/32
1/64
1/128

• See [SIGCOMM 2000] for table maintenance

10

37

DHash/Chord Interface

 lookup() returns list with node IDs closer in
ID space to block ID
 Sorted, closest first

server

DHash

Chord

Lookup(blockID) List of <node-ID, IP address>

finger table with <node IDs, IP address>

38

DHash Uses Other Nodes to Locate Blocks

N40

N10

N5

N20

N110

N99

N80 N50

N60N68

Lookup(BlockID=45)

1.
2.

3.

39

Storing Blocks

 Long-term blocks are stored for a fixed time
 Publishers need to refresh periodically

 Cache uses LRU

disk: cache Long-term block storage

40

Replicate blocks at r successors

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

• Node IDs are SHA-1 of IP Address
• Ensures independent replica failure

11

41

Lookups find replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

1.
3.

2.

4.

Lookup(BlockID=17)

RPCs:
1. Lookup step
2. Get successor list
3. Failed block fetch
4. Block fetch

42

First Live Successor Manages Replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

Copy of
17

• Node can locally determine that it is the first live
successor

43

DHash Copies to Caches Along Lookup Path

N40

N10

N5

N20

N110

N99

N80

N60

Lookup(BlockID=45)

N50

N68

1.

2.

3.

4.RPCs:
1. Chord lookup
2. Chord lookup
3. Block fetch
4. Send to cache

44

Caching at Fingers Limits Load

N32

• Only O(log N) nodes have fingers pointing to N32
• This limits the single-block load on N32

12

45

Virtual Nodes Allow Heterogeneity

 Hosts may differ in disk/net capacity
 Hosts may advertise multiple IDs

 Chosen as SHA-1(IP Address, index)
 Each ID represents a “virtual node”

 Host load proportional to # v.n.’s
 Manually controlled

Node A

N60N10 N101

Node B

N5

46

Fingers Allow Choice of Paths

N80 N48

100ms

10ms

• Each node monitors RTTs to its own fingers
• Tradeoff: ID-space progress vs delay

N25

N90

N96

N18N115

N70

N37

N55

50ms

12ms

Lookup(47)

47

Why Blocks Instead of Files?

 Cost: one lookup per block
 Can tailor cost by choosing good block size

 Benefit: load balance is simple
 For large files
 Storage cost of large files is spread out
 Popular files are served in parallel

48

CFS Project Status

 Working prototype software
 Some abuse prevention mechanisms
 SFSRO file system client

 Guarantees authenticity of files, updates, etc.
 Napster-like interface in the works

 Decentralized indexing system
 Some measurements on RON testbed
 Simulation results to test scalability

13

49

Experimental Setup (12 nodes)

 One virtual node per host
 8Kbyte blocks
 RPCs use UDP

CA-T1
CCI
Aros
Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSL To vu.nl lulea.se ucl.uk

To kaist.kr, .ve

• Caching turned off
• Proximity routing

turned off

50

CFS Fetch Time for 1MB File

• Average over the 12 hosts
• No replication, no caching; 8 KByte blocks

Fe
tc

h
Ti

m
e

(S
ec

on
ds

)

Prefetch Window (KBytes)

51

Distribution of Fetch Times for 1MB

Fr
ac

tio
n

of
 F

et
ch

es

Time (Seconds)

8 Kbyte Prefetch

24 Kbyte Prefetch40 Kbyte Prefetch

52

CFS Fetch Time vs. Whole File TCP

Fr
ac

tio
n

of
 F

et
ch

es

Time (Seconds)

40 Kbyte Prefetch

Whole File TCP

14

53

Robustness vs. Failures

Fa
ile

d
Lo

ok
up

s
(F

ra
ct

io
n)

Failed Nodes (Fraction)

(1/2)6 is 0.016

Six replicas
per block;

54

CFS Summary

 CFS provides peer-to-peer r/o storage
 Structure: DHash and Chord
 It is efficient, robust, and load-balanced
 It uses block-level distribution
 The prototype is as fast as whole-file TCP

http://www.pdos.lcs.mit.edu/chord

