
1

1

Peer to Peer File Storage Systems

CS 699

2

Acknowledgements

Some of the followings slides are borrowed from a talk by Robert
Morris (MIT)

3

P2P File Systems

 File Sharing is one of the most popular P2P
applications
 E.g. Music sharing ala Napster, Gnutella, etc.
 Anonymous storage

 Many P2P file systems built on top of DHTs
 Freenet (anonymity)
 PAST

o Whole file storage
o On top of PASTRY

 CFS
o Block-oriented
o On top of Chord

4

Target Uses

 Serving data with inexpensive hosts:
 open-source distributions
 off-site backups
 tech report archive
 efficient sharing of music

node

node
node

node

Internet

node

2

5

How to mirror open-source distributions?
 Multiple independent distributions

 Each has high peak load, low average

 Individual servers are wasteful
 Solution: aggregate

 Option 1: single powerful server
 Option 2: distributed service

o But how do you find the data?

6

Some Design Challenges
 Scalability
 Avoid hot spots
 Spread storage burden evenly
 High availability

 Tolerate unreliable participants

 Anonymity
 Security

7

Freenet: A Distributed Anonymous
Information Storage & Retrieval

System

Ian Clarke et al

8

Freenet: Design Goals

 Location-independent (wide area) distributed file
system

 Goals
 Anonymity for producers and consumers of information
 Deniability for storers of information
 Resistance to attempts by third parties to deny access

to information
 Efficient dynamic storage and routing of information
 Decentralization of all network functions

3

9

Architecture

 Overlay network of nodes that store files
 Files are identified by location-independent keys
 Queries routed via steepest-ascent hill-climbing

search with backtracking
 Transparent lazy replication
 Files are encrypted for deniability
 Anonymity: requesters and inserters of files

cannot be identified since a node in a request path
cannot tell whether its predecessor initiated the
request or is forwarding it

10

Keys and Searching (1)
 Each file has a unique file key obtained by using the 160-bit

SHA-1 hash function
 Three types of keys

 Keyword-signed Key (KSK):
o generate public/private key pair from descriptive text, e.g.

gmu/cs/it818/lec2; apply SHA-1 to public key to get file key;
private half of key used to sign the file

o Problems: flat global name space, “key-squatting”
 Signed-Subspace Key (SSK)

o User randomly generates a public/private key pair for her
namespace, hashes public namespace key and descriptive string
separately, XORs them, hashes the result to obtain file key; private
key used to sign file

o Knowing public key of namespace and descriptive text enable users
to compute file key

o Can create a hierarchical file structure using SSKs

11

Keys and Searching (2)

 Third type of key
 Content-hash key (CHK)

o Derived by hashing the contents of the file

 CHKs used in conjunction with SSKs for implementing
updating and splitting of files
 User stores a file under its CHK
 User stores an indirect file (with a SSK) whose contents are

the CHK
 File can be retrieved in two steps if SSK is known
 The indirect file is updated by the owner with the new CHK if

the file is updated
 The indirect file can contain the CHKs of the parts of a large

file that are split up and stored separately

12

Retrieving Data
 File request = Key Request
 Each node maintains a routing table with (key, node) entries
Node receiving request checks its own store for key

1. if key found, returns file + note saying it is the data source
2. If key not found, looks up “lexicographically closest” key in

routing table to requested key and forwards the request to the
corresponding node

3. If data returned, passes the data back to the original requestor,
caches a copy of the data, creates a new entry in routing table
associating data source with requested key

4. If node cannot forward request because downstream node is
down, the second nearest key is tried and so on… when it runs out
of candidates, it reports a failure to upstream neighbor, who
then tries its second choice, etc.

5. If hops to live exceeded, failure is reported

4

Routing Algorithm: search or insert

AA

BB CC

DD

InitiatorInitiator

14

Routing algorithm

 Each node makes a copy of data file
 Transparent data replication
 File cached close to requestors – locality

 Nodes make new entries for previously unknown
nodes that supply files
 Increases connectivity

 Nodes will tend to become specialized in clusters
of files with similar keys
 Improves efficiency of future requests
 Lexicographic similarity has no correlation to descriptive

strings of a file or to file contents

15

Inserts

 Inserts follow same algorithm as searches
 If a node receiving an insert request has an old

version of the file (with the same key), it returns
the pre-existing file as if a request was made –
this enables detection of collisions

 Once path for insert established, inserter sends
the data which is propagated along path and also
stored at each node along the way

16

Security Issues

 Anonymity:
 Any node along the way for an insert or search

can replace the data source field to claim itself
or any arbitrary node as the source

 Messages do not automatically terminate after
hops-to-live = 1 but are forwarded with finite
probability

 Deniability:
 All files are encrypted; storer does not know

encryption key

5

17

Performance

 Simulation study
 Metrics

 Network convergence: how much time for the
pathlengths to come down to acceptable levels?

 Scalability: how does pathlength grow as
network size increases

 Fault tolerance: how does pathlength evolve as
nodes fail

 Small-world model applicable?

18

PAST: A Large-scale, persistent peer-
to-peer storage utility

A. Rowstron & P. Druschel
SOSP 2001

19

Overview

 Peer-to-peer storage utility
 Similar to Oceanstore, Freenet, CFS

 PAST nodes form a self-organizing overlay
network
 PASTRY used as routing layer (similar to Tapestry)

 Nodes can insert or retrieve files and (optionally)
contribute storage

 Replication used for additional reliability; caching
and locality for performance

20

PASTRY

 Based on Plaxton mesh like Tapestry with some
differences

 Prefix routing with one digit resolved at each
step
 NodeIds and fileIds are sequences of digits with base 2b

 O(log 2b N) steps
 Routing table

o log 2b N levels each with 2b-1 entries
o Leaf set – L numerically closest nodeids (L/2 larger, L/2

smaller)
o Neighborhood set – L closest nodes based on proximity

metric - (this set is valuable in obtaining routing info from
nodes that are closeby)

6

21

PAST Operations
1. Fileid = Insert(name, owner-credentials, k, file)

 Fileid (160 bits) is SHA-1 hash of file name, owner’s public key, and a
random salt

 Stores a file at k nodes in the PAST network whose nodeids are numerically
closest to the 128 most significant bits of fileId
o PAST nodes have 128-bit ids generated by a hash of the node’s public key or IP

address
 Owner credentials = file certificate containing file metadata signed with

owner’s private key
 Once all k nodes closest to fileid have accepted the file, an

acknowledgement returned to client to which each of the k nodes attaches
a store receipt

2. File = lookup(fileid)
 Retrieves the file from one of the k nodes with a copy (normally from the

closest such node)
3. Reclaim(fileId,owner-credentials)

 Reclaims the storage occupied by k copies of the file
 Weaker semantics than delete – does not guarantee that the file is no

longer available
22

Security

 Each PAST node and user hold a smart card with a
public/private key pair

 Smart cards generate and verify certificates
ensuring the integrity of fileid and nodeid
assignments
 Assume smart cards are tamper-proof

 Store receipts, file certificates, reclaim
certificates ensure integrity and authenticity of
stored content

 Pastry routing scheme
 All messages are signed, preventing forged entries
 Routing is redundant, etc….

23

Storage Management
 Storage imbalance arises from

 Statistical variation in assignment of nodeids and fileids
 Size distribution of inserted files may have large variance
 Storage capacity of individual nodes differs

o Assume no more than two orders of magnitude difference

 Goals
 Balance the remaining free storage space among nodes as

storage space utilization nears 100%
 Maintain the invariant that copies of the file are stored at the

k nodes closest to fileId
 Techniques

 Replica diversion
 File diversion

24

Replica Diversion

 If one of the k closest nodes (say A) cannot
accommodate a copy of a file, one of the nodes in
its leaf set (say B) that is not among the k closest
is used to store a replica
 A makes an entry in its file table with a pointer to B, and

returns a store receipt as usual

 Need to ensure that
 Failure of node B causes the creation of a new replica

o Under the PASTRY protocol, nodes keep track of live and
failed nodes in their leaf set

 Failure of node A does not render replica on B
inaccessible

o Achieved by entering a pointer to B on C, the k+1 th closest
nodeid to fileid

7

25

Replica diversion cont’d
 Policies

1. Reject a replica if file_size/free_space > t
 Nodes among k closest (primary replica stores) use a

larger threshold t than diverted replica stores
2. How to chose node for diverted replica?

 Select a node with maximal remaining free space among
nodes in the leaf set of a primary store node, have a
nodeId that is not among k closest, and does not already
have a diverted copy

3. When to divert the entire file to another part of the
nodeId space?
 If a primary store rejects the replica, and the node it

then selects for the diverted replica also rejects it, the
entire file is diverted

26

Other issues

 File diversion
 On failure, client generates a new fileid and

tries again (three times before giving up)

 File encoding
 Caching

 A file that is routed through a node keeps a
cached copy if its size is less than a fraction c
of its current cache size

 Greedy-dual-size cache replacement

27

Experimental Results

 Able to achieve global storage utilization >
98%

 Failed file insertions remains below 5% at
95% utilization and biased towards large
files

 Caching is effective in achieving load
balancing and reduces fetch distance and
network traffic

28

Wide-Area Cooperative Storage with CFS

Robert Morris
Frank Dabek, M. Frans Kaashoek,

David Karger, Ion Stoica

MIT and Berkeley

8

29

Design Challenges
 Avoid hot spots
 Spread storage burden evenly
 Tolerate unreliable participants
 Fetch speed comparable to whole-file TCP
 Avoid O(#participants) algorithms

 Centralized mechanisms [Napster], broadcasts [Gnutella]

 CFS solves these challenges

30

CFS Architecture

 Each node is a client and a server (like xFS)
 Clients can support different interfaces

 File system interface
 Music key-word search (like Napster and Gnutella)

node

client server

node

clientserver
Internet

31

Client-server interface

 Files have unique names
 Files are read-only (single writer, many readers)
 Publishers split files into blocks
 Clients check files for authenticity [SFSRO]

FS Client server
Insert file f

Lookup file f

Insert block

Lookup block

node

server

node

32

Server Structure

• DHash stores, balances, replicates, caches blocks

• DHash uses Chord [SIGCOMM 2001] to locate blocks

DHash

Chord

Node 1 Node 2

DHash

Chord

9

33

Chord Hashes a Block ID to its Successor

N32

N10

N100

N80

N60

Circular
ID Space

• Nodes and blocks have randomly distributed IDs
• Successor: node with next highest ID

B33, B40, B52

B11, B30

B112, B120, …, B10

B65, B70

B100

Block ID Node ID

34

Basic Lookup

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is block 70?”

“N80”

• Lookups find the ID’s predecessor
• Correct if successors are correct

35

Successor Lists Ensure Robust Lookup

N32

N10

N5

N20

N110

N99

N80

N60

• Each node stores r successors, r = 2 log N
• Lookup can skip over dead nodes to find blocks

N40

10, 20, 32

20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99

80, 99, 110

99, 110, 5

110, 5, 10

5, 10, 20

36

Chord Finger Table Allows O(log N) Lookups

N80

__

1/8

1/16
1/32
1/64
1/128

• See [SIGCOMM 2000] for table maintenance

10

37

DHash/Chord Interface

 lookup() returns list with node IDs closer in
ID space to block ID
 Sorted, closest first

server

DHash

Chord

Lookup(blockID) List of <node-ID, IP address>

finger table with <node IDs, IP address>

38

DHash Uses Other Nodes to Locate Blocks

N40

N10

N5

N20

N110

N99

N80 N50

N60N68

Lookup(BlockID=45)

1.
2.

3.

39

Storing Blocks

 Long-term blocks are stored for a fixed time
 Publishers need to refresh periodically

 Cache uses LRU

disk: cache Long-term block storage

40

Replicate blocks at r successors

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

• Node IDs are SHA-1 of IP Address
• Ensures independent replica failure

11

41

Lookups find replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

1.
3.

2.

4.

Lookup(BlockID=17)

RPCs:
1. Lookup step
2. Get successor list
3. Failed block fetch
4. Block fetch

42

First Live Successor Manages Replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

Block
17

N68

Copy of
17

• Node can locally determine that it is the first live
successor

43

DHash Copies to Caches Along Lookup Path

N40

N10

N5

N20

N110

N99

N80

N60

Lookup(BlockID=45)

N50

N68

1.

2.

3.

4.RPCs:
1. Chord lookup
2. Chord lookup
3. Block fetch
4. Send to cache

44

Caching at Fingers Limits Load

N32

• Only O(log N) nodes have fingers pointing to N32
• This limits the single-block load on N32

12

45

Virtual Nodes Allow Heterogeneity

 Hosts may differ in disk/net capacity
 Hosts may advertise multiple IDs

 Chosen as SHA-1(IP Address, index)
 Each ID represents a “virtual node”

 Host load proportional to # v.n.’s
 Manually controlled

Node A

N60N10 N101

Node B

N5

46

Fingers Allow Choice of Paths

N80 N48

100ms

10ms

• Each node monitors RTTs to its own fingers
• Tradeoff: ID-space progress vs delay

N25

N90

N96

N18N115

N70

N37

N55

50ms

12ms

Lookup(47)

47

Why Blocks Instead of Files?

 Cost: one lookup per block
 Can tailor cost by choosing good block size

 Benefit: load balance is simple
 For large files
 Storage cost of large files is spread out
 Popular files are served in parallel

48

CFS Project Status

 Working prototype software
 Some abuse prevention mechanisms
 SFSRO file system client

 Guarantees authenticity of files, updates, etc.
 Napster-like interface in the works

 Decentralized indexing system
 Some measurements on RON testbed
 Simulation results to test scalability

13

49

Experimental Setup (12 nodes)

 One virtual node per host
 8Kbyte blocks
 RPCs use UDP

CA-T1
CCI
Aros
Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSL To vu.nl lulea.se ucl.uk

To kaist.kr, .ve

• Caching turned off
• Proximity routing

turned off

50

CFS Fetch Time for 1MB File

• Average over the 12 hosts
• No replication, no caching; 8 KByte blocks

Fe
tc

h
Ti

m
e

(S
ec

on
ds

)

Prefetch Window (KBytes)

51

Distribution of Fetch Times for 1MB

Fr
ac

tio
n

of
 F

et
ch

es

Time (Seconds)

8 Kbyte Prefetch

24 Kbyte Prefetch40 Kbyte Prefetch

52

CFS Fetch Time vs. Whole File TCP

Fr
ac

tio
n

of
 F

et
ch

es

Time (Seconds)

40 Kbyte Prefetch

Whole File TCP

14

53

Robustness vs. Failures

Fa
ile

d
Lo

ok
up

s
(F

ra
ct

io
n)

Failed Nodes (Fraction)

(1/2)6 is 0.016

Six replicas
per block;

54

CFS Summary

 CFS provides peer-to-peer r/o storage
 Structure: DHash and Chord
 It is efficient, robust, and load-balanced
 It uses block-level distribution
 The prototype is as fast as whole-file TCP

http://www.pdos.lcs.mit.edu/chord

