
1

1

Distributed Hash Tables (DHTs)
Chord & CAN

CS 699/IT 818
Sanjeev Setia

2

Acknowledgements

The followings slides are borrowed or adapted from talks by Robert
Morris (MIT) and Sylvia Ratnasamy (ICSI)

3

Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications

Robert Morris
Ion Stoica, David Karger,

M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

SIGCOMM Proceedings, 2001
4

Chord Simplicity

 Resolution entails participation by O(log(N))
nodes

 Resolution is efficient when each node
enjoys accurate information about
O(log(N)) other nodes

 Resolution is possible when each node
enjoys accurate information about 1 other
node

“Degrades gracefully”



2

5

Chord Algorithms

Basic Lookup
Node Joins
Stabilization
Failures and Replication

6

Chord Properties

 Efficient: O(log(N)) messages per lookup
 N is the total number of servers

 Scalable: O(log(N)) state per node
 Robust: survives massive failures

 Proofs are in paper / tech report
 Assuming no malicious participants

7

Chord IDs

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

 How to map key IDs to node IDs?

8

Consistent Hashing[Karger 97]

 Target: web page caching
 Like normal hashing, assigns items to

buckets so that each bucket receives
roughly the same number of items

 Unlike normal hashing, a small change in the
bucket set does not induce a total
remapping of items to buckets



3

9

Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor:
node with next higher ID

10

Basic lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

11

Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n   // next hop

else
return my successor    // done

 Correctness depends only on successors

12

“Finger table” allows log(N)-time lookups

N80

1/21/4

1/8

1/16
1/32
1/64
1/128



4

13

Finger i points to successor of n+2i-1

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

112

N120

14

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop

else
return my successor // done

15

Lookups take O(log(N)) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

16

Node Join - Linked List Insert

N36

N40

N25

1. Lookup(36)
K30
K38



5

17

Node Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

18

Node Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

19

Node Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30

20

Stabilization

 Case 1: finger tables are reasonably fresh
 Case 2: successor pointers are correct; fingers

are inaccurate
 Case 3: successor pointers are inaccurate or key

migration is incomplete

 Stabilization algorithm periodically verifies and
refreshes node knowledge
 Successor pointers
 Predecessor pointers
 Finger tables



6

21

Failures and Replication

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

22

Solution: successor lists

 Each node knows r immediate successors
 After failure, will know first live successor
 Correct successors guarantee correct lookups

 Guarantee is with some probability

23

Choosing the successor list length

 Assume 1/2 of nodes fail
 P(successor list all dead) = (1/2)r

 I.e. P(this node breaks the Chord ring)
 Depends on independent failure

 P(no broken nodes) = (1 – (1/2)r)N

 r = 2log(N) makes prob. = 1 – 1/N

24

Chord status

 Working implementation as part of CFS
 Chord library: 3,000 lines of C++
 Deployed in small Internet testbed
 Includes:

 Correct concurrent join/fail
 Proximity-based routing for low delay
 Load control for heterogeneous nodes
 Resistance to spoofed node IDs



7

25

Experimental overview

 Quick lookup in large systems
 Low variation in lookup costs
 Robust despite massive failure
 See paper for more results

Experiments confirm theoretical results

26

Chord lookup cost is O(log N)

Number of Nodes

Av
er

ag
e 

M
es

sa
ge

s 
pe

r 
Lo

ok
up

Constant is 1/2

27

Failure experimental setup

 Start 1,000 CFS/Chord servers
 Successor list has 20 entries

 Wait until they stabilize
 Insert 1,000 key/value pairs

 Five replicas of each

 Stop X% of the servers
 Immediately perform 1,000 lookups

28

Massive failures have little impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d 
Lo

ok
up

s 
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%



8

29

Latency Measurements

 180 Nodes at 10 sites in US testbed
 16 queries per physical site (sic) for random keys
 Maximum < 600 ms
 Minimum > 40 ms
 Median = 285 ms
 Expected value = 300 ms (5 round trips)

30

Chord Summary

 Chord provides peer-to-peer hash lookup
 Efficient: O(log(n)) messages per lookup
 Robust as nodes fail and join
 Good primitive for peer-to-peer systems

http://www.pdos.lcs.mit.edu/chord

31

Sylvia Ratnasamy,   Paul Francis,   Mark Handley,

Richard Karp,  Scott Shenker

A Scalable, Content-Addressable Network

32

Content-Addressable Network (CAN)

 CAN: Internet-scale hash table
 Interface

 insert(key,value)
 value = retrieve(key)

 Properties
 scalable
 operationally simple
 good performance

 Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...



9

33

Problem Scope

   Design a system that provides the interface
   scalability
   robustness
   performance
   security

   Application-specific, higher level primitives
   keyword searching
   mutable content
   anonymity

34

K  V

CAN: basic idea

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

35

CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

36

CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



10

37

CAN: basic idea

(K1,V1)

K  V

K  V
K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

38

CAN: basic idea

retrieve (K1)

K  V

K  V
K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

39

CAN: solution

 virtual Cartesian coordinate space

 entire space is partitioned amongst all the nodes
 every node “owns” a zone in the overall space

 abstraction
 can store data at “points” in the space 
 can route from one “point” to another

 point  = node that owns the enclosing zone

40

CAN: simple example

1



11

41

CAN: simple example

1 2

42

CAN: simple example

1

2

3

43

CAN: simple example

1

2

3

4

44

CAN: simple example



12

45

CAN: simple example

 I

46

CAN: simple example

node I::insert(K,V)

 I

47

(1)  a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

 I

48

(1)  a = hx(K)
      b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

 I



13

49

(1)  a = hx(K)
      b = hy(K)

CAN: simple example

  (2)  route(K,V) ->  (a,b)

node I::insert(K,V)

 I

50

CAN: simple example

  (2)  route(K,V) ->  (a,b)

  (3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

 I(1)  a = hx(K)
      b = hy(K)

51

CAN: simple example

  (2)  route “retrieve(K)” to (a,b) (K,V)

(1)  a = hx(K)
      b = hy(K)

node J::retrieve(K)

 J

52

Data stored in the CAN is addressed by
name (i.e. key), not location (i.e. IP
address)

CAN



14

53

CAN: routing table

54

CAN: routing

(a,b)

(x,y)

55

A node only maintains state for its
immediate neighboring nodes

CAN: routing

56

CAN: node insertion

1) Discover some node “I” already in CAN

Bootstrap
 node

new node



15

57

CAN: node insertion

I

new node
1) discover some node “I” already in CAN 58

CAN: node insertion

2) pick random 
point in space

I

(p,q)

new node

59

CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J 

I

J

new node 60

CAN: node insertion

newJ

4) split J’s zone in half… new owns one half



16

61

Inserting a new node affects only a single
other node and its immediate neighbors

CAN: node insertion

62

CAN: node failures

 Need to repair the space
 recover database

 soft-state updates
 use replication, rebuild database from replicas

 repair routing
 takeover algorithm

63

CAN: takeover algorithm

 Simple failures
 know your neighbor’s neighbors
 when a node fails, one of its neighbors takes over

its zone

 More complex failure modes
 simultaneous failure of multiple adjacent nodes
 scoped flooding to discover neighbors
 hopefully, a rare event

64

Only the failed node’s immediate neighbors
are required for recovery

CAN: node failures



17

65

Design recap

 Basic CAN
 completely distributed
 self-organizing
 nodes only maintain state for their immediate

neighbors
 Additional design features

 multiple, independent spaces (realities)
 background load balancing algorithm
 simple heuristics to improve performance

66

Evaluation

 Scalability

 Low-latency

 Load balancing

 Robustness

67

CAN: scalability

 For a uniformly partitioned space with n nodes and d
dimensions
 per node, number of neighbors is 2d
 average routing path is  (dn1/d)/4 hops
 simulations show that the above results hold in practice

 Can scale the network without increasing per-node
state

 Chord/Plaxton/Tapestry/Buzz
 log(n) nbrs with log(n) hops

68

CAN: low-latency

 Problem
 latency stretch = (CAN routing delay)

                             (IP routing delay)
 application-level routing may lead to high stretch

 Solution
 increase dimensions
 heuristics

 RTT-weighted routing
 multiple nodes per zone (peer nodes)
 deterministically replicate entries



18

69

CAN: low-latency

#nodes

La
te

nc
y 

st
re

tc
h

0

20

40

60

80

100

120

140

160

180

16K 32K 65K 131K

#dimensions = 2

w/o heuristics

w/ heuristics

70

CAN: low-latency

0

2

4

6

8

10

#nodes

La
te

nc
y 

st
re

tc
h

16K 32K 65K 131K

#dimensions = 10

w/o heuristics

w/ heuristics

71

CAN: load balancing

 Two pieces
 Dealing with hot-spots

 popular (key,value) pairs
 nodes cache recently requested entries
 overloaded node replicates popular entries at neighbors

 Uniform coordinate space partitioning
 uniformly spread (key,value) entries
 uniformly spread out routing load

72

Uniform Partitioning

 Added check
 at join time, pick a zone
 check neighboring zones
 pick the largest zone and split that one



19

73

Uniform Partitioning

V = total volume
n

0

20

40

60

80

100

V 2V 4V 8V

Volume

Percentage
 of nodes

w/o check

w/ check

V
16

V
 8

V
 4

V
 2

65,000 nodes, 3 dimensions

74

CAN: Robustness

 Completely distributed
 no single point of failure

 Not exploring database recovery
 Resilience of routing

 can route around trouble

75

Routing resilience

destination

source

76

Routing resilience



20

77

Routing resilience

destination

78

Routing resilience

79

 Node X::route(D)
If (X cannot make progress to D)

– check if any neighbor of X can make progress
– if yes, forward message to  one such nbr

Routing resilience

80

Routing resilience



21

81

Routing resilience

dimensions

0

20

40

60

80

100

2 4 6 8 10

Pr
(s

uc
ce

ss
fu

l r
ou

ti
ng

)

CAN size = 16K nodes
Pr(node failure) = 0.25

82

Routing resilience

0

20

40

60

80

100

0 0.25 0.5 0.75

CAN size = 16K nodes
#dimensions = 10

Pr(node failure)

Pr
(s

uc
ce

ss
fu

l r
ou

ti
ng

)

83

Summary

 CAN
 an Internet-scale hash table

 potential building block in Internet applications

 Scalability
 O(d) per-node state

 Low-latency routing
 simple heuristics help a lot

 Robust
 decentralized, can route around trouble


