
1

1

Distributed Hash Tables (DHTs)
Chord & CAN

CS 699/IT 818
Sanjeev Setia

2

Acknowledgements

The followings slides are borrowed or adapted from talks by Robert
Morris (MIT) and Sylvia Ratnasamy (ICSI)

3

Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications

Robert Morris
Ion Stoica, David Karger,

M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

SIGCOMM Proceedings, 2001
4

Chord Simplicity

 Resolution entails participation by O(log(N))
nodes

 Resolution is efficient when each node
enjoys accurate information about
O(log(N)) other nodes

 Resolution is possible when each node
enjoys accurate information about 1 other
node

“Degrades gracefully”

2

5

Chord Algorithms

Basic Lookup
Node Joins
Stabilization
Failures and Replication

6

Chord Properties

 Efficient: O(log(N)) messages per lookup
 N is the total number of servers

 Scalable: O(log(N)) state per node
 Robust: survives massive failures

 Proofs are in paper / tech report
 Assuming no malicious participants

7

Chord IDs

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

 How to map key IDs to node IDs?

8

Consistent Hashing[Karger 97]

 Target: web page caching
 Like normal hashing, assigns items to

buckets so that each bucket receives
roughly the same number of items

 Unlike normal hashing, a small change in the
bucket set does not induce a total
remapping of items to buckets

3

9

Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor:
node with next higher ID

10

Basic lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

11

Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n // next hop

else
return my successor // done

 Correctness depends only on successors

12

“Finger table” allows log(N)-time lookups

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

4

13

Finger i points to successor of n+2i-1

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

112

N120

14

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop

else
return my successor // done

15

Lookups take O(log(N)) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

16

Node Join - Linked List Insert

N36

N40

N25

1. Lookup(36)
K30
K38

5

17

Node Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

18

Node Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

19

Node Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30

20

Stabilization

 Case 1: finger tables are reasonably fresh
 Case 2: successor pointers are correct; fingers

are inaccurate
 Case 3: successor pointers are inaccurate or key

migration is incomplete

 Stabilization algorithm periodically verifies and
refreshes node knowledge
 Successor pointers
 Predecessor pointers
 Finger tables

6

21

Failures and Replication

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

22

Solution: successor lists

 Each node knows r immediate successors
 After failure, will know first live successor
 Correct successors guarantee correct lookups

 Guarantee is with some probability

23

Choosing the successor list length

 Assume 1/2 of nodes fail
 P(successor list all dead) = (1/2)r

 I.e. P(this node breaks the Chord ring)
 Depends on independent failure

 P(no broken nodes) = (1 – (1/2)r)N

 r = 2log(N) makes prob. = 1 – 1/N

24

Chord status

 Working implementation as part of CFS
 Chord library: 3,000 lines of C++
 Deployed in small Internet testbed
 Includes:

 Correct concurrent join/fail
 Proximity-based routing for low delay
 Load control for heterogeneous nodes
 Resistance to spoofed node IDs

7

25

Experimental overview

 Quick lookup in large systems
 Low variation in lookup costs
 Robust despite massive failure
 See paper for more results

Experiments confirm theoretical results

26

Chord lookup cost is O(log N)

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r
Lo

ok
up

Constant is 1/2

27

Failure experimental setup

 Start 1,000 CFS/Chord servers
 Successor list has 20 entries

 Wait until they stabilize
 Insert 1,000 key/value pairs

 Five replicas of each

 Stop X% of the servers
 Immediately perform 1,000 lookups

28

Massive failures have little impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

8

29

Latency Measurements

 180 Nodes at 10 sites in US testbed
 16 queries per physical site (sic) for random keys
 Maximum < 600 ms
 Minimum > 40 ms
 Median = 285 ms
 Expected value = 300 ms (5 round trips)

30

Chord Summary

 Chord provides peer-to-peer hash lookup
 Efficient: O(log(n)) messages per lookup
 Robust as nodes fail and join
 Good primitive for peer-to-peer systems

http://www.pdos.lcs.mit.edu/chord

31

Sylvia Ratnasamy, Paul Francis, Mark Handley,

Richard Karp, Scott Shenker

A Scalable, Content-Addressable Network

32

Content-Addressable Network (CAN)

 CAN: Internet-scale hash table
 Interface

 insert(key,value)
 value = retrieve(key)

 Properties
 scalable
 operationally simple
 good performance

 Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...

9

33

Problem Scope

 Design a system that provides the interface
 scalability
 robustness
 performance
 security

 Application-specific, higher level primitives
 keyword searching
 mutable content
 anonymity

34

K V

CAN: basic idea

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

35

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

36

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

10

37

CAN: basic idea

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

38

CAN: basic idea

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

39

CAN: solution

 virtual Cartesian coordinate space

 entire space is partitioned amongst all the nodes
 every node “owns” a zone in the overall space

 abstraction
 can store data at “points” in the space
 can route from one “point” to another

 point = node that owns the enclosing zone

40

CAN: simple example

1

11

41

CAN: simple example

1 2

42

CAN: simple example

1

2

3

43

CAN: simple example

1

2

3

4

44

CAN: simple example

12

45

CAN: simple example

 I

46

CAN: simple example

node I::insert(K,V)

 I

47

(1) a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

 I

48

(1) a = hx(K)
 b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

 I

13

49

(1) a = hx(K)
 b = hy(K)

CAN: simple example

 (2) route(K,V) -> (a,b)

node I::insert(K,V)

 I

50

CAN: simple example

 (2) route(K,V) -> (a,b)

 (3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

 I(1) a = hx(K)
 b = hy(K)

51

CAN: simple example

 (2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
 b = hy(K)

node J::retrieve(K)

 J

52

Data stored in the CAN is addressed by
name (i.e. key), not location (i.e. IP
address)

CAN

14

53

CAN: routing table

54

CAN: routing

(a,b)

(x,y)

55

A node only maintains state for its
immediate neighboring nodes

CAN: routing

56

CAN: node insertion

1) Discover some node “I” already in CAN

Bootstrap
 node

new node

15

57

CAN: node insertion

I

new node
1) discover some node “I” already in CAN 58

CAN: node insertion

2) pick random
point in space

I

(p,q)

new node

59

CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J

I

J

new node 60

CAN: node insertion

newJ

4) split J’s zone in half… new owns one half

16

61

Inserting a new node affects only a single
other node and its immediate neighbors

CAN: node insertion

62

CAN: node failures

 Need to repair the space
 recover database

 soft-state updates
 use replication, rebuild database from replicas

 repair routing
 takeover algorithm

63

CAN: takeover algorithm

 Simple failures
 know your neighbor’s neighbors
 when a node fails, one of its neighbors takes over

its zone

 More complex failure modes
 simultaneous failure of multiple adjacent nodes
 scoped flooding to discover neighbors
 hopefully, a rare event

64

Only the failed node’s immediate neighbors
are required for recovery

CAN: node failures

17

65

Design recap

 Basic CAN
 completely distributed
 self-organizing
 nodes only maintain state for their immediate

neighbors
 Additional design features

 multiple, independent spaces (realities)
 background load balancing algorithm
 simple heuristics to improve performance

66

Evaluation

 Scalability

 Low-latency

 Load balancing

 Robustness

67

CAN: scalability

 For a uniformly partitioned space with n nodes and d
dimensions
 per node, number of neighbors is 2d
 average routing path is (dn1/d)/4 hops
 simulations show that the above results hold in practice

 Can scale the network without increasing per-node
state

 Chord/Plaxton/Tapestry/Buzz
 log(n) nbrs with log(n) hops

68

CAN: low-latency

 Problem
 latency stretch = (CAN routing delay)

 (IP routing delay)
 application-level routing may lead to high stretch

 Solution
 increase dimensions
 heuristics

 RTT-weighted routing
 multiple nodes per zone (peer nodes)
 deterministically replicate entries

18

69

CAN: low-latency

#nodes

La
te

nc
y

st
re

tc
h

0

20

40

60

80

100

120

140

160

180

16K 32K 65K 131K

#dimensions = 2

w/o heuristics

w/ heuristics

70

CAN: low-latency

0

2

4

6

8

10

#nodes

La
te

nc
y

st
re

tc
h

16K 32K 65K 131K

#dimensions = 10

w/o heuristics

w/ heuristics

71

CAN: load balancing

 Two pieces
 Dealing with hot-spots

 popular (key,value) pairs
 nodes cache recently requested entries
 overloaded node replicates popular entries at neighbors

 Uniform coordinate space partitioning
 uniformly spread (key,value) entries
 uniformly spread out routing load

72

Uniform Partitioning

 Added check
 at join time, pick a zone
 check neighboring zones
 pick the largest zone and split that one

19

73

Uniform Partitioning

V = total volume
n

0

20

40

60

80

100

V 2V 4V 8V

Volume

Percentage
 of nodes

w/o check

w/ check

V
16

V
 8

V
 4

V
 2

65,000 nodes, 3 dimensions

74

CAN: Robustness

 Completely distributed
 no single point of failure

 Not exploring database recovery
 Resilience of routing

 can route around trouble

75

Routing resilience

destination

source

76

Routing resilience

20

77

Routing resilience

destination

78

Routing resilience

79

 Node X::route(D)
If (X cannot make progress to D)

– check if any neighbor of X can make progress
– if yes, forward message to one such nbr

Routing resilience

80

Routing resilience

21

81

Routing resilience

dimensions

0

20

40

60

80

100

2 4 6 8 10

Pr
(s

uc
ce

ss
fu

l r
ou

ti
ng

)

CAN size = 16K nodes
Pr(node failure) = 0.25

82

Routing resilience

0

20

40

60

80

100

0 0.25 0.5 0.75

CAN size = 16K nodes
#dimensions = 10

Pr(node failure)

Pr
(s

uc
ce

ss
fu

l r
ou

ti
ng

)

83

Summary

 CAN
 an Internet-scale hash table

 potential building block in Internet applications

 Scalability
 O(d) per-node state

 Low-latency routing
 simple heuristics help a lot

 Robust
 decentralized, can route around trouble

