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Chord Simplicity

 Resolution entails participation by O(log(N))
nodes

 Resolution is efficient when each node
enjoys accurate information about
O(log(N)) other nodes

 Resolution is possible when each node
enjoys accurate information about 1 other
node

“Degrades gracefully”
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Chord Algorithms

Basic Lookup
Node Joins
Stabilization
Failures and Replication
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Chord Properties

 Efficient: O(log(N)) messages per lookup
 N is the total number of servers

 Scalable: O(log(N)) state per node
 Robust: survives massive failures

 Proofs are in paper / tech report
 Assuming no malicious participants
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Chord IDs

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

 How to map key IDs to node IDs?
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Consistent Hashing[Karger 97]

 Target: web page caching
 Like normal hashing, assigns items to

buckets so that each bucket receives
roughly the same number of items

 Unlike normal hashing, a small change in the
bucket set does not induce a total
remapping of items to buckets
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Consistent Hashing [Karger 97]
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A key is stored at its successor:
node with next higher ID
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Basic lookup
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“Where is key 80?”

“N90 has K80”
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Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n   // next hop

else
return my successor    // done

 Correctness depends only on successors
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“Finger table” allows log(N)-time lookups
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Finger i points to successor of n+2i-1
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Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop

else
return my successor // done

15

Lookups take O(log(N)) hops
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Node Join - Linked List Insert
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Node Join (2)

N36
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N25

2. N36 sets its own
successor pointer

K30
K38
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Node Join (3)
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3. Copy keys 26..36
from N40 to N36
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Node Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30
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Stabilization

 Case 1: finger tables are reasonably fresh
 Case 2: successor pointers are correct; fingers

are inaccurate
 Case 3: successor pointers are inaccurate or key

migration is incomplete

 Stabilization algorithm periodically verifies and
refreshes node knowledge
 Successor pointers
 Predecessor pointers
 Finger tables
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Failures and Replication

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)
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Solution: successor lists

 Each node knows r immediate successors
 After failure, will know first live successor
 Correct successors guarantee correct lookups

 Guarantee is with some probability
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Choosing the successor list length

 Assume 1/2 of nodes fail
 P(successor list all dead) = (1/2)r

 I.e. P(this node breaks the Chord ring)
 Depends on independent failure

 P(no broken nodes) = (1 – (1/2)r)N

 r = 2log(N) makes prob. = 1 – 1/N
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Chord status

 Working implementation as part of CFS
 Chord library: 3,000 lines of C++
 Deployed in small Internet testbed
 Includes:

 Correct concurrent join/fail
 Proximity-based routing for low delay
 Load control for heterogeneous nodes
 Resistance to spoofed node IDs
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Experimental overview

 Quick lookup in large systems
 Low variation in lookup costs
 Robust despite massive failure
 See paper for more results

Experiments confirm theoretical results
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Chord lookup cost is O(log N)
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Failure experimental setup

 Start 1,000 CFS/Chord servers
 Successor list has 20 entries

 Wait until they stabilize
 Insert 1,000 key/value pairs

 Five replicas of each

 Stop X% of the servers
 Immediately perform 1,000 lookups
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Massive failures have little impact
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Latency Measurements

 180 Nodes at 10 sites in US testbed
 16 queries per physical site (sic) for random keys
 Maximum < 600 ms
 Minimum > 40 ms
 Median = 285 ms
 Expected value = 300 ms (5 round trips)
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Chord Summary

 Chord provides peer-to-peer hash lookup
 Efficient: O(log(n)) messages per lookup
 Robust as nodes fail and join
 Good primitive for peer-to-peer systems

http://www.pdos.lcs.mit.edu/chord
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Sylvia Ratnasamy,   Paul Francis,   Mark Handley,

Richard Karp,  Scott Shenker

A Scalable, Content-Addressable Network
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Content-Addressable Network (CAN)

 CAN: Internet-scale hash table
 Interface

 insert(key,value)
 value = retrieve(key)

 Properties
 scalable
 operationally simple
 good performance

 Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...
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Problem Scope

   Design a system that provides the interface
   scalability
   robustness
   performance
   security

   Application-specific, higher level primitives
   keyword searching
   mutable content
   anonymity
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CAN: basic idea
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CAN: basic idea
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CAN: basic idea
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CAN: basic idea
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CAN: basic idea

retrieve (K1)
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CAN: solution

 virtual Cartesian coordinate space

 entire space is partitioned amongst all the nodes
 every node “owns” a zone in the overall space

 abstraction
 can store data at “points” in the space 
 can route from one “point” to another

 point  = node that owns the enclosing zone
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CAN: simple example

1
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CAN: simple example

1 2
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CAN: simple example

1
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CAN: simple example
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CAN: simple example
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CAN: simple example

 I
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CAN: simple example

node I::insert(K,V)

 I
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(1)  a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

 I
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(1)  a = hx(K)
      b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

 I
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(1)  a = hx(K)
      b = hy(K)

CAN: simple example

  (2)  route(K,V) ->  (a,b)

node I::insert(K,V)

 I
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CAN: simple example

  (2)  route(K,V) ->  (a,b)

  (3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

 I(1)  a = hx(K)
      b = hy(K)
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CAN: simple example

  (2)  route “retrieve(K)” to (a,b) (K,V)

(1)  a = hx(K)
      b = hy(K)

node J::retrieve(K)

 J
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Data stored in the CAN is addressed by
name (i.e. key), not location (i.e. IP
address)

CAN
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CAN: routing table
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CAN: routing

(a,b)

(x,y)
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A node only maintains state for its
immediate neighboring nodes

CAN: routing
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CAN: node insertion

1) Discover some node “I” already in CAN

Bootstrap
 node

new node
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CAN: node insertion

I

new node
1) discover some node “I” already in CAN 58

CAN: node insertion

2) pick random 
point in space

I

(p,q)

new node

59

CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J 

I

J

new node 60

CAN: node insertion

newJ

4) split J’s zone in half… new owns one half
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Inserting a new node affects only a single
other node and its immediate neighbors

CAN: node insertion
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CAN: node failures

 Need to repair the space
 recover database

 soft-state updates
 use replication, rebuild database from replicas

 repair routing
 takeover algorithm
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CAN: takeover algorithm

 Simple failures
 know your neighbor’s neighbors
 when a node fails, one of its neighbors takes over

its zone

 More complex failure modes
 simultaneous failure of multiple adjacent nodes
 scoped flooding to discover neighbors
 hopefully, a rare event
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Only the failed node’s immediate neighbors
are required for recovery

CAN: node failures
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Design recap

 Basic CAN
 completely distributed
 self-organizing
 nodes only maintain state for their immediate

neighbors
 Additional design features

 multiple, independent spaces (realities)
 background load balancing algorithm
 simple heuristics to improve performance
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Evaluation

 Scalability

 Low-latency

 Load balancing

 Robustness
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CAN: scalability

 For a uniformly partitioned space with n nodes and d
dimensions
 per node, number of neighbors is 2d
 average routing path is  (dn1/d)/4 hops
 simulations show that the above results hold in practice

 Can scale the network without increasing per-node
state

 Chord/Plaxton/Tapestry/Buzz
 log(n) nbrs with log(n) hops

68

CAN: low-latency

 Problem
 latency stretch = (CAN routing delay)

                             (IP routing delay)
 application-level routing may lead to high stretch

 Solution
 increase dimensions
 heuristics

 RTT-weighted routing
 multiple nodes per zone (peer nodes)
 deterministically replicate entries
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CAN: low-latency
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CAN: low-latency
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CAN: load balancing

 Two pieces
 Dealing with hot-spots

 popular (key,value) pairs
 nodes cache recently requested entries
 overloaded node replicates popular entries at neighbors

 Uniform coordinate space partitioning
 uniformly spread (key,value) entries
 uniformly spread out routing load
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Uniform Partitioning

 Added check
 at join time, pick a zone
 check neighboring zones
 pick the largest zone and split that one
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Uniform Partitioning

V = total volume
n
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65,000 nodes, 3 dimensions
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CAN: Robustness

 Completely distributed
 no single point of failure

 Not exploring database recovery
 Resilience of routing

 can route around trouble
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Routing resilience

destination

source

76

Routing resilience
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Routing resilience

destination
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Routing resilience
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 Node X::route(D)
If (X cannot make progress to D)

– check if any neighbor of X can make progress
– if yes, forward message to  one such nbr

Routing resilience

80

Routing resilience



21

81

Routing resilience
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Routing resilience
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Summary

 CAN
 an Internet-scale hash table

 potential building block in Internet applications

 Scalability
 O(d) per-node state

 Low-latency routing
 simple heuristics help a lot

 Robust
 decentralized, can route around trouble


