
1

1

Distributed Hash Tables (DHTs)
Tapestry & Pastry

CS 699/IT 818
Sanjeev Setia

2

Acknowledgements

Some of the followings slides are borrowed or
adapted from talks by Robert Morris (MIT) and Ben
Zhao (UC, Santa Barbara)

2

3

DHTs

 Distributed Hash Tables: a building block for P2P
applications

 Today:
 Tapestry (Zhao et al -- UC Berkeley)
 Pastry (Rowstron et al - Microsoft Research)

 Next class
 Chord
 CAN

 Several other DHTs have been proposed
 Student presentations

4

What Is a P2P System?

 A distributed system architecture:
 No centralized control
 Nodes are symmetric in function

 Large number of unreliable nodes
 Enabled by technology improvements

Node

Node

Node Node

Node

Internet

3

5

The Promise of P2P Computing

 High capacity through parallelism:
 Many disks
 Many network connections
 Many CPUs

 Reliability:
 Many replicas
 Geographic distribution

 Automatic configuration
 Useful in public and proprietary settings

6

What Is a DHT?

 Single-node hash table:
key = Hash(name)
put(key, value)
get(key) -> value
 Service: O(1) storage

 How do I do this across millions of hosts on
the Internet?
 Distributed Hash Table

4

7

What Is a DHT?

Distributed Hash Table:
key = Hash(data)
lookup(key) -> IP address (Chord)
send-RPC(IP address, PUT, key, value)
send-RPC(IP address, GET, key) -> value

Possibly a first step towards truly large-scale
distributed systems
 a tuple in a global database engine
 a data block in a global file system
 rare.mp3 in a P2P file-sharing system

8

DHTs

Distributed hash table

Distributed application

get (key) data

node node node….

put(key, data)

Lookup service

lookup(key) node IP address

• Application may be distributed over many nodes
• DHT distributes data storage over many nodes

(DHash)

(Chord)

5

9

Why the put()/get() interface?

 API supports a wide range of applications
 DHT imposes no structure/meaning on keys

 Key/value pairs are persistent and global
 Can store keys in other DHT values
 And thus build complex data structures

10

Why Might DHT Design Be Hard?

 Decentralized: no central authority
 Scalable: low network traffic overhead
 Efficient: find items quickly (latency)
 Dynamic: nodes fail, new nodes join
 General-purpose: flexible naming

6

11

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Put (Key=“title”
Value=file data…) Client

Get(key=“title”)

?

• At the heart of all DHTs

12

Motivation: Centralized Lookup
(Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4

7

13

Motivation: Flooded Queries
(Gnutella)

N4Publisher@
Client

N6

N9

N7
N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=file data…

Lookup(“title”)

14

Motivation: Routed DHT Queries
(Tapestry, Pastry, Chord, CAN, etc)

N4Publisher

Client

N6

N9

N7
N8

N3

N2N1

Lookup(H(audio data))

Key=H(audio data)
Value={artist,
album title,
 track title}

8

15

DHT Applications

 global file systems [OceanStore, CFS, PAST, Pastiche,
UsenetDHT]

 naming services [Chord-DNS, Twine, SFR]
 DB query processing [PIER, Wisc]
 Internet-scale data structures [PHT, Cone, SkipGraphs]
 communication services [i3, MCAN, Bayeux]
 event notification [Scribe, Herald]
 File sharing [OverNet]

16

Tapestry: Scalable and Fault-
tolerant Routing and Location

9

17

What is Tapestry?
 A prototype of a decentralized, scalable, fault-tolerant,

adaptive location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)

 Network layer of OceanStore
 Routing: Suffix-based hypercube

 Similar to Plaxton, Rajamaran, Richa (SPAA97)

 Decentralized location:
 Virtual hierarchy per object with cached location references

 Core API:
 publishObject(ObjectID, [serverID])
 routeMsgToObject(ObjectID)
 routeMsgToNode(NodeID)

18

Routing and Location
 Namespace (nodes and objects)

 160 bits  280 names before name collision
 Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function

 Suffix routing from A to B
 At hth hop, arrive at nearest node hop(h) s.t.

hop(h) shares suffix with B of length h digits
 Example: 5324 routes to 0629 via

5324  2349  1429  7629  0629

 Object location:
 Root responsible for storing object’s location
 Publish / search both route incrementally to root

10

19

Publish / Lookup
 Publish object with ObjectID:

// route towards “virtual root,” ID=ObjectID
For (i=0, i<Log2(N), i+=j) { //Define hierarchy

 j is # of bits in digit size, (i.e. for hex digits, j = 4)
 Insert entry into nearest node that matches on

last i bits
 If no matches found, deterministically choose alternative
 Found real root node, when no external routes left

 Lookup object
Traverse same path to root as publish, except search for entry at
each node
For (i=0, i<Log2(N), i+=j) {

 Search for cached object location
 Once found, route via IP or Tapestry to object

20

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3

2

4

Tapestry Mesh: Incremental suffix-based routing

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

11

21

Routing in Detail

5712

0880

3210

7510

4510

Neighbor Map
For “5712” (Octal)

Routing Levels
1234

xxx1

5712

xxx0

xxx3

xxx4
xxx5

xxx6

xxx7

xx02

5712

xx22

xx32

xx42
xx52

xx62

xx72

x012

x112

x212

x312

x412
x512

x612

5712

0712

1712

2712

3712

4712
5712

6712

7712

5712 0 1 2 3 4 5 6 7

0880 0 1 2 3 4 5 6 7

3210 0 1 2 3 4 5 6 7

4510 0 1 2 3 4 5 6 7

7510 0 1 2 3 4 5 6 7

Example: Octal digits, 212 namespace, 5712  7510

22

Object Location -- Randomization and Locality

12

23

Fault-tolerant Location
 Minimized soft-state vs. explicit fault-recovery
 Redundant roots

 Object names hashed w/ small salts  multiple
names/roots

 Queries and publishing utilize all roots in parallel
 P(finding reference w/ partition) = 1 – (1/2)n

where n = # of roots

 Soft-state periodic republish
 50 million files/node, daily republish,

b = 16, N = 2160 , 40B/msg,
worst case update traffic: 156 kb/s,

 expected traffic w/ 240 real nodes: 39 kb/s

24

Surrogate Routing
 An object’s root or surrogate node is the node

which matches object id in the greatest number of
trailing bits
 Plaxton’s algorithm relies on global knowledge (total

ordering) to route queries when it encounters an empty
neighbor entry

 Tapestry uses a deterministic algorithm to
incrementally compute a unique root node
 May involve additional hops in comparison to Plaxton’s

approach
 Expected number of additional hops is 2

13

25

Fault-tolerant Routing
 Strategy:

 Detect failures via soft-state probe packets
 Route around problematic hop via backup

pointers

 Handling:
 3 forward pointers per outgoing route

(2 backups)
 2nd chance algorithm for intermittent failures
 Upgrade backup pointers and replace

26

Dynamic Operation
 Node Insertion

 Populating the Neighbor Map
 Starting with a gateway node, route to new_id,

copying a neighbor map at each hop, then optimize
neighbor map

 Neighbor Notification
 For surrogate routing links, traverse backpointers and

change entries
– Delete object-to-location entries affected by new routing

entry

 Send hello messages to all neighbors and secondary
neighbors in each level

14

27

Summary
 Decentralized location and routing infrastructure

 Core routing similar to PRR97
 Distributed algorithms for object-root

mapping, node insertion / deletion
 Fault-handling with redundancy,

soft-state beacons, self-repair
 Decentralized and scalable, with locality

 Analytical properties
 Per node routing table size: bLogb(N)

 N = size of namespace, n = # of physical nodes

 Find object in Logb(n) overlay hops

28

Evaluation
 Tapestry Evaluation

 Implementation, Planetlab
 Simulation

 Metrics
 Routing overhead - ratio of routing delay using the overlay to

the shortest IP delay
 Success in routing a request (% successful lookups)
 Network Bandwidth
 Node insertion latency

 Experiments
 Routing latency
 Impact of caching optimizations
 Impact of Network Dynamics

 Single node insertion, parallel node insertion
 Massive failures, constant churn

15

29

PASTRY: Scalable, decentralized object
location and routing for large P2P systems

Rowstron & Druschel

30

PASTRY
 Based on Plaxton mesh like Tapestry with some

differences
 Prefix routing with one digit resolved at each

step
 NodeIds and fileIds are sequences of digits with base 2b

 O(log 2b N) steps
 Routing table

 log 2b N levels each with 2b-1 entries
 Leaf set – L numerically closest nodeids (L/2 larger, L/2

smaller)
 Neighborhood set – L closest nodes based on proximity

metric - (this set is valuable in obtaining routing info from
nodes that are closeby)

16

31

PASTRY routing

10203102122311012230111002201200

31202001113122011020300113021022

2

102331-2-00

10233-3-0110233-2-01110233-0-11

31023-2-1001023-1-1011023-0-110

3102-2-1101102-1-2100102-0-2101

10-3-21011210-1-3210210-0-21022

1-3-2100221-2-2300101-1-3012200

-3-1220110-2-23023321-0-2212102

10233232102332301023300010233001

10233122102331201023302110233033Leaf
Set

Routing
Table

NodeId 10233102

Neighborhood
 Set

b = 2, L = 8

32

Pastry routing
 Prefix routing similar to Plaxton, Tapestry
 Differences

 If key falls within range of leaf set, message forwarded
directly to node in leaf set closest to key

 If routing entry empty or if associated node is
unreachable, then forward to a node in leaf set (or
neighborhood set) that shares a prefix with the key at
least as long as the local node, and whose id is numerically
closer to the key than the local node’s id.

17

33

Pastry cont’d
 Node addition

 Similar to Tapestry, I.e. node routes a message to itself
resulting in message being routed to current surrogate (Z)
 Contacts a nearby node A, asking it to route a message to

itself
 Obtains i-th row of its routing map from i-th node

encountered from A to Z
 Obtains neighborhood set from A
 Obtains leaf set from Z

 Node deletion
 Nodes exchange keep-alive messages with nodes in their leaf set,

if failure detected in leaf set, obtain leaf sets from a live node in
the leaf set with largest index (on the side of the failed node);
select a node from this leaf set

 To repair failed routing entries, get corresponding entry from
another node in the same row of routing table; if that fails, try
another node in the next row, and so on…

34

Discussion Items

 Differences between Tapestry & Pastry
 Routing algorithm - surrogate routing vs leaf set
 Approaches for exploiting locality

 DHTs vs unstructured P2P systems
 Do you typically know the exact name of the item or file

you’re looking for?
 How would DHTs support keyword search?

 How good are the locality heuristics used in
Tapestry/Pastry?

 No notion of hierarchy for DHTs
 Is this good?

