
1

Publius Publius
A Robust, Tamper Evident, A Robust, Tamper Evident,
Censorship Resistant WWW Censorship Resistant WWW
Based Publishing SystemBased Publishing System

Presented by Anyi Liu
Dec. 2, 2004

By Lorrie Cranor AT&T Labs
Avi Rubin Marc
Waldman New York University

Proc. 9th USENIX Security Symposium, 2000

Acknowledgments

Some of the following slides are adapted
from the slides created by the authors of the
paper, and the following link
http://www-
net.cs.umass.edu/cs791n/marc.ppt

2

Agenda
Motivations and Design Goals
Main Ideas
Implementation Details
Security Challenges

What is Publius in History?

Publius is the pen name used by three authors
of Federalist Papers
Authors may publish their papers without
worrying about been disclosed of real-world
identities.

3

Design Goals

Censorship resistant
Difficult for a third party to modify or delete content

Tamper evident
Unauthorized changes should be detected

Source anonymous
No way to tell who published the content

Updateable
Changes or deletion of content should be possible for
publishers

Design Goals (cont)
Deniable

Involved third parties should be able to deny
knowledge of what is published

Fault Tolerant
System remains functional, even if some third
parties are faulty or malicious

Persistent
No expiration date on published materials

4

Related Works
Connection Based Anonymity

Hide identity of requestor
Anonymizing proxies (for example Anonymizer.com)
Freedom (Zero-Knowledge Systems)
Crowds (AT&T Labs-Research)

Location or Author Based Anonymity
Hide identity of author or WWW server

USENET Eternity System
Freenet
Intermemory
Rewebber

Agenda
Motivations and Design Goals
Main Ideas
Implementation Details
Security Challenges

5

Theoretical Foundation
ShamirShamir secret sharing theoremsecret sharing theorem

Suppose Alice wants to share a secrete among n
agents. Any subset of n agents(say, k) can use their
shares to reconstruct the secrete
No subset of size < k learns anything
Assume that up to n-k agents may be “bad”, and may
not reveal their shares. The rest of the agents are
“good”, and follow the protocol
The bad agents can’t prevent the good agents from
reconstruct the secrete

Publius System Roles
Publius is a Client-Server paradigm

Publishers
Post Publius content to the web

Servers
A set of hosts that store random-looking
content

Retrievers
Browse Publius content on web

6

Publius System Operations
There are basically four type of operations

Publish
A publisher posts content across multiple servers
in a source-anonymous fashion

Retrieve
A retriever gets content from multiple servers

Delete
The original publisher of a document removes it
from the Publius servers

Update
The original publisher modifies a document

Publius Publish Operation
Alice generates a random symmetric key K
She encrypts message M with key K,
producing {M}K

She splits K into n shares, using Shamir
secret sharing theorem, such that any k can
reproduce K
Each share is uniquely named:

namei = wrap(H(M . sharei))

MD5

7

Publius Publish
Operation(Cont’)

Publishers Servers
A set of locations is chosen:

locationi = (namei MOD m) + 1
Each locationi indexes into the

list of m servers
If sizeof(location) < d , start

over again
Otherwise, Alice publishes

{M}K and sharei into a directory
namei on the server at locationi

A URL containing at least the d
namei values is produced
Note: d represents the minimum number of unique server that will hold the Publius content.

Publius Publishing

...
name = de26fe4fc8c6

name = 620a8a3d63b
name = 1e0995d6698

1

2

n

...

135.207.8.15
121.113.8.5

1

2

m 206.35.113.9

105.3.14.1

...

...

...

3

4

7

12

201.18.24.5

210.183.28.4

209.185.143.19

location = 7

location = 12
loction = 4

1

2

n

Publisher

Servers

/publius/1e0995d6698/{M}K

Server 3

Server 8

/publius/de26fe4fc8c6/{M}K
/publius/620a8a3d63b/{M}K

Server 4

Server 12
Server 7

201.18.24.5

209.185.143.19
210.183.28.4

Server Table
Available

8

Publius Retrieve Operation
Bob parses out each namei from URL, and for
each, computes:

locationi = (namei MOD m) + 1
Bob chooses k of these, and retrieves the
encrypted file {M}K and sharei at each server
Bob combines the shares to get K, and
decrypts the message M
Bob verifies that each name value is correct:

namei = wrap(H(M . sharei))
If namei can’t be reconstruct through M,
sharei The content has been tampered.

Retrieving a Publius document

Publishers Servers Retrievers

9

Publius Delete Operation
Alice generates a password PW when
publishing a file
Alice includes H(server_domain_name . PW)
in server directory when publishing

Note that each server does not store PW/H(PW),
because it prevents malicious server operator from
deleting content on all other servers

Alice deletes by sending
H(server_domain_name . PW) and namei to
each of the n servers hosting content

Publius Update Operation
Idea: change content without changing
original URL, as links to that URL may
exist
In addition to the file, the share, and
the password, there may be an update
file in the namei directory
This update file will not exist if Alice has
not updated the content

10

Publius Update
Operation(Cont’)
To update, Alice specifies a new file, the
original URL, the original password PW, and a
new password
First, the new content is published, and a
new URL is generated
Then, each of the n old files is deleted, and
an update file, containing the new URL, is
placed in each namei directory of each
servers

Publius Update
Operation (Cont’)
When Bob retrieves updated content,
the server returns Bob the updated URL
Bob receive all the updated URL from k
servers, and checks if all of the new
URLs are identical
If yes, Bob will retrieves the content at
the new URL

11

Other Features

Entire directories can be published by
exploiting the updateability of Publius
Mechanism exists to encode MIME type into
Publius content
Publius URLs include option fields and other
flags, the value of k, and other relevant
values

Older broswers prohibit URLs of length >255
characters
Once this limitation is removed, URLs can include
server list, making this list non-static

Agenda
Motivations and Design Goals
Main Ideas
Implementation Details
Security Challenges

12

Publius URLs
Since most old browsers only accept URL with
at most 256 characters, Publius defines URL
in the following format:

http://!anon!/options encode(name1)……encode(namen)

Version# # of shares needed Update Flag

14 12*20

2

24bits(12
ASCII)

Publius proxies

Publishers Servers

P
R
O
X
Y

P
R
O
X
Y

Retrievers Publius proxies
running on a user’s
local machine or on
the network handle
all the publish and
retrieve operations

Proxies also
allow publishers to
delete and update
content

13

Server/Client Side Software

Server: Accept HTTP POST operation
Requested operation, file name, password,
and other info are passed through POST
request

Client=Http Proxy+a set of publish tools
Return values: Success

Unable to find M
Update Re-direct

Publish Mutual Hyper-Links
How to publish documents contains hyper-links. Let’s
discuss two cases:
Case1: Alice trying to publish HTML file A and B, A
contains a hyper-link to file B

BurlAB B url
Publish Publish Publish A url

14

Publish Mutual Hyper-
Links(cont’)

DurlD D url
Publish

Change

Case2: Alice trying to publish HTML file C and D, C contains a
hyper-link to file D, and D contains C

DurlC C url
Publish

Change
C’

D’

Update

Update

C’url

D’url

Agenda
Motivations and Design Goals
Main Ideas
Implementation Details
Security Challenges

15

Share deletion or corruption

Share deletion or corruption
If all n copies of a file, or n-k+1 copies of
the shares, are deleted, then the file is
unreadable (less than k shares exist)

Solution: Increasing n, or decreasing k,
makes this attack harder

Update file deletion or
corruption

Update file deletion or corruption (case1)
If there is no update file, malicious server
operator, Mallory, could create one and
pointing to bad content
This requires the accomplice of at least k
other server.

Solution:
This attack motivates a higher value of k
If update flag was turned off, it will prevent
this attack

16

Update file deletion or
corruption(cont’)
Update file deletion or corruption (case2)

If Publius content has already been updated,
Mallory must corrupt update files on n-k+1 servers
Of course, if Mallory can do this, she can censor
any document
Larger n and smaller k make this more difficult

Update file deletion or
corruption(cont’)
Update file deletion or corruption (case3)

If Mallory can delete the updated files on all
servers to be deleted, he can restore the content
to its previous state
This motivate client to retrieve from all n copies
before perform verification
This solution seems impractical

Deciding upon good values for n and k is
difficult

Case1, 2 vs Case3
No suggestions from Waldman et al.

17

Denial of service attacks
Publius, like all internet services, is
subject to DoS attacks

Flooding is less effective, as n-k+1 servers
must be attacked
A malicious user could attempt to fill disk
space on servers

Some mechanisms in place to prevent this

Threats to publisher
anonymity
If the Publius content contains any
identifying information, anonymity will
be lost
Publius does not provide any connection
based anonymity. Eavesdrop is
possible.

If you act as a publisher, you must
anonymize your connections with the
Publius servers

18

“Rubber-hose cryptanalysis”
The technique of breaking a code or cipher
by finding someone who has the key and
applying a rubber hose vigorously and
repeatedly to the soles of that luckless
person's feet until the key is discovered.
Even though some server could be forced to
delete Publius content, to do it across the
countries and jurisdictions is very expensive
and impractical

Publius vs Freenet
Both provide publisher anonymity,
deniability, and censorship resistance
Freenet provides anonymity for retrievers
and servers, as well

Cost is high: data must be cached at many
nodes

Publius provides persistence of data
Freenet does not
Can any p2p system provide persistence?

19

Questions
How do you publish Publius URLs
anonymously?

The first person to publish a Publius URL must
have some connection with the publisher of the
content
If you have somewhere secure and anonymous to
publish the Publius URLs, why do you need
Publius?

One possible answer: censorship resistance
But server operators are then potentially liable

Questions
How deniable is Publius?

Publius URLs are public
With minimal effort, a Publius server
operator could determine the content
being served

20

Questions
Could Publius be made into a p2p
service?
Would it be appropriate to do so?

More questions?

