
1

Efficient search in
peer to peer
networks
Authors: Beverly Yang, Hector Garcia-Molina, in
proceedings of the ICDCS’02 conference, 2002

Presented by: Venkata Gopal K Addada

2/37

Acknowledgements

Some of the followings slides are borrowed or
adapted from talks at NetCINS lab, University
of Patras, Greece.

2

3/37

Key Challenges
Designing efficient techniques for search and
retrieval of data in peer-peer systems

Best search techniques for a system depends on the
needs of the application.

In structured P2P systems the retrieval of object is
guaranteed, if it exists in the system.

Current search techniques in “loose” P2P systems
tend to be very inefficient, either generating too
much load on the system, or providing for a very bad
user experience.

4/37

Towards Efficient Searching

Queries are processed by more nodes than desired.
Experiments show that most queries can be answered by
querying fewer nodes

Improve Search Techniques
Make queries more efficient
Generate as little load as possible
Provide good user experience

Suggested Improvement
Processing queries through fewer nodes.

3

5/37

Techniques
Iterative Deepening

Iteratively send the query to more nodes until query is
answered

Directed BFS (Breadth First Search)
Send the query to an intelligently selected set of nodes

Local Indices
Nodes maintain small indices over other nodes’ stored data

6/37

Problem Framework 1/2

P2P: Undirected graph
Vertices: nodes in the n/w
Edges: Open connections between neighbors.

Messages will travel from node A to B
following a path.

Length of the path: Number of hops

Source of query: Node submitting the query

4

7/37

Problem Framework 2/2

When a node receives a query it should
process the query locally and

respond to the query
forward the query or
drop the query

8/37

Metrics
Cost

Average Aggregate Bandwidth
Average Aggregate Processing Cost

for a representative set of queries, Qrep

Quality of Results
Number of Results
Satisfaction of the query
the query is satisfied if Z or more results are returned
Time to satisfaction:
how long the user must wait for the Zth result to arrive

5

9/37

Proposed Search Techniques
Gnutella
Breadth-first traversal (BFS) over the network with
depth limit D

Freenet
Depth-first traversal (DFS) over the network with
depth limit D.

10/37

Discussion…
Quality of results measured only by number of
results then BFS is ideal

If Satisfaction is metric of choice BFS wastes much
bandwidth and processing power

With DFS each node processes the query
sequentially,searches can be terminated as soon as
the query is satisfied, thereby minimizing cost.But
poor response time due to the above

(Worst case is exponenitial in D)

6

11/37

Broadcast Policy
BFS and DFS falls on opposite extremes of
bandwidth/processing cost and response time.

Need to find some middle ground between the two
extremes, while maintaining quality of the results.

12/37

Iterative Deepening
When satisfaction is the metric of choice

Multiple BFS are initiated with successively larger
depths, until query is satisfied or the maximum depth
limit D is reached

System wide policy specifying at what depth the
iterations are to occur

A waiting period W (time between successive
iterations in the policy) must be specified

7

13/37

Working of Iterative Deepening 1/2

Policy P{a,b,c}
Source node S initiates a BFS of depth a by sending
out a query message to all its neighbors
Query becomes frozen at all nodes a hops away from
S (Frontier nodes)
S receives response from those nodes that have
processed the query so far and waits for a time
period W.
If the query is not yet satisfied, S will start the next
iteration, initiating BFS at depth b by sending a
Resend message.

14/37

A node that receives a resend message,simply
unfreezes the query (stored temporarily) and
forwards the query to its neighbors.

This process continues in the similar fashion till
depth D is reached. At depth D, the query is dropped

Identifying Queries
Every query is assigned a system wide “unique identifier”.
The resend message will contain the identifier of the query
so as the frontier nodes will know which query to unfreeze.

Working of Iterative Deepening 2/2

8

15/37

Iterative Deepening
Source

Frontier [Level 1]

P={1,3}

Frontier [Level 3]

1

2 3

5 6

7

42 3 4

7

Frozen Query

Resend Query

Reply and Drop Query

16/37

Directed BFS 1/2

When response time is the metric of choice.

Send queries to a subset of nodes that will return
many results quickly

Statistics (History) about neighbors should be kept

By sending the queries to a small subset of nodes:
the cost incurred will be reduced significantly
The quality of results is not decreased significantly

9

17/37

Directed BFS 2/2

Criteria for selecting the best neighbor
Returned most results
Shortest satisfaction time
Min hops for results
Sent us most messages (all types)
Shortest Message queue
Shortest latency
Highest degree

18/37

Local Indices 1/5

A node maintains an index over the data of each node
within r hops of itself

When a node receives a Query message, it can then
process the query on behalf of every node within r
hops of itself

Collections of many nodes can be searched by
processing the query at few nodes, while keeping the
cost low

10

19/37

Local Indices 2/5

Radius r is a system-wide parameter

r should be small.

The index will be small - typically of the order of 50
KB- independent of the size of the network

20/37

Local Indices 3/5

Policy specifies at which depth query will be
processed ex: P = { a,b,c }

All nodes at depths not listed in the policy will simply
forward the query to the next depth

Last value in policy P (c in above example) can have
maximum value of (D-r). (Why?)

11

21/37

Local Indices 4/5

When a new node joins: Sends a join message with
TTL=r and all the nodes within r hops update their
indices.

Join message contains the metadata about the joining
node

When a node receives this join message it, in turn,
send join message containing its meta data directly to
the new node.New node updates its indices

22/37

Local Indices 5/5

Node dies: Other nodes update their indices based on
the timeouts

Updating the node: When a node updates its
collection, his node will send out a small update
message with TTL= r, containing the metadata of the
affected item.All nodes receiving this message
subsequently update their index.

12

23/37

Experimental Setup
Existing GNUTELLA clients are used

Representative set of queries Qrep used to analyze
the results

(500 from 500,00 observed queries)

GNUTELLA ‘PING’ messages used to calculate number
of hops to a node

Experiments only performed for ‘Iterative deepening’
and ‘Directed BFS’

24/37

Metrics
Average Aggregate Bandwidth: The average,
over a set of representative queries Qrep, of
the aggregate bandwidth consumed (in bytes)
over every edge in the network on behalf of
each query.

Average Aggregate Processing Cost: The
average, over a set of representative queries
Qrep, of the aggregate processing power
consumed at every node in the network on
behalf of each query.

13

25/37

Results for Iterative Deepening 1/4

Policies used for analysis:
P = { Pd = { d, d+1, …, D}, for d = 1,2….,D}
P1 = {1, 2, 3, …., D}
P2 = {2, 3, …., D}
P3 = {3, 4, …., D}
.
.
PD-1 = {D-1, D}
PD = {D}

26/37

Results for Iterative Deepening 2/4

Bandwidth consumption for
various iterative deepening

policies

Bandwidth cost increases as
d increases
Sending the query to more nodes
than necessary will generate extra
bandwidth consumption. (Remember
Z=50 across all experiments)

Bandwidth cost increases as
W decreases

if W is small there is higher likelihood
that the source will determine that
the query was not satisfied
(Prematurely)
Authors recommended P5 and
W=6

14

27/37

Results for Iterative Deepening 3/4

Time to satisfaction for various
iterative deepening policies

Time to satisfaction
increases as d decreases
as d decreases the number of
iterations needed to satisfy a query
will increase.

Time to satisfaction
increases as W increases
as W decreases the time spent at
each iteration decreases and thus
the time to satisfaction decreases
too.

28/37

Results for Iterative Deepening 4/4

Probability of satisfaction for
different Z

Satisfaction with 4 neighbors
is not much lower than
satisfaction with 8 neighbors

Authors suggest NOT to
have large number of
neighbors

15

29/37

Results for Directed BFS 1/3

>RES is the best one followed
by <TIME

<HOPS is worse than RAND

Authors could not explain why
performance of <QLEN drops
when Z = 100

30/37

Results for Directed BFS 2/3

<TIME is the best one followed
by >RES

>DEG does not perform as
expectedTime to satisfaction for

various Directed BFS policies

16

31/37

Results for Directed BFS 3/3

Bandwidth consumption for
Directed BFS

There is a correlation between
cost and quality of results
More quality results implies more
aggregated bandwidth

Bandwidth consumption
independent of Z

Iterative Deepening vs Directed
BFS

Directed BFS performs better
when looking at time to satisfaction
Iterative deepening can achieve
lower cost

32/37

Results for Local Indices 1/3

Bandwidth consumption for Local
Indices

As QueryJoinRatio increases the
cost decreases.
The cost of node joins/leaves
dominates the query cost for
large values of r
For a normal system with QJR=10
the best choice is r=1.

17

33/37

Results for Local Indices 2/3

Comparison of Bandwidth Consumed
by Queries and Join/Leaves

Query/Join ratio = 20

Cost of joins/leaves grows
exponentially

When ‘r’ is large this cost dominates
over the cost of queries

Amortized cost of updates is
always relatively small
fraction of total cost

34/37

Cost:
Even though the size of the
index grows exponentially, it
still practical for all r in range.
For example, at r = 7 with 4
neighbors, the size of the index
would be roughly 21MB. For r =1,
the size of the index would be
roughly 71KB.

Results for Local Indices 3/3

18

35/37

Conclusions 1/2

Compared to BFS the discussed techniques greatly
reduce the aggregate cost of processing query over
the entire system, while maintaining the quality of
results

Schemes are simple and practical to implement on the
existing systems

Bootstrapping new node in directed BFS scheme is
not well-defined (No statistical data/History)

36/37

Conclusions 2/2

Relative performance technique using BFS as baseline

19

37/37

Questions

?

	Efficient search in peer to peer networks
	Acknowledgements
	Key Challenges
	Towards Efficient Searching
	Techniques
	Problem Framework1/2
	Problem Framework2/2
	Metrics
	Proposed Search Techniques
	Discussion…
	Broadcast Policy
	Iterative Deepening
	Working of Iterative Deepening 1/2
	Working of Iterative Deepening 2/2
	Iterative Deepening
	Directed BFS 1/2
	Directed BFS 2/2
	Local Indices 1/5
	Local Indices 2/5
	Local Indices 3/5
	Local Indices 4/5
	Local Indices 5/5
	Experimental Setup
	Metrics
	Results for Iterative Deepening 1/4
	Results for Iterative Deepening 2/4
	Results for Iterative Deepening 3/4
	Results for Iterative Deepening 4/4
	Results for Directed BFS 1/3
	Results for Directed BFS 2/3
	Results for Directed BFS 3/3
	Results for Local Indices 1/3
	Results for Local Indices 2/3
	Results for Local Indices 3/3
	Conclusions1/2
	Conclusions2/2
	Questions

