CPU Scheduling

CS 571

CPU - I/O Burst Cycle

@ [— 1 F—]

Long CPU burst \
Waiting for 1/O
Short CPU burst \
0 C— {} i} —— —1——

Time

* Bursts of CPU usage alternate with periods of I/0 wait
— a CPU-bound process
— an I/O bound process

Basic Concepts

CPU-1/O Burst Cycle — Process execution
consists of a cycle of CPU execution and 1/0
wait.

Maximum CPU utilization obtained with
multiprogramming

CPU Scheduler

Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one of
them.
CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.
Scheduling under 1 and 4 is nonpreemptive.

All other scheduling is preemptive.

Scheduling Metrics

* CPU utilization — keep the CPU as busy as
possible

* Throughput — # of processes that complete
their execution per time unit

* Turnaround/Response time — amount of
time to execute a particular process

« Waiting time — amount of time a process
has been waiting in the ready queue

Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Dispatcher

* Dispatcher module gives control of the CPU
to the process selected by the scheduler; this
involves:

— switching context

— switching to user mode

— jumping to the proper location in the user
program to restart that program

» Dispatch latency — time it takes for the
dispatcher to stop one process and start
another running.

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P, 24
P, 3
P; 3
 Suppose that the processes arrive in the order: P, ,

P, P;
The Gantt Chart for the schedule is:

P, P, P,

N 24 27 30
« Waiting time for P, =0; P, =24; P;=27

* Average waiting time: (0 + 24 +27)/3 =17

8

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,,P;,P,.
The Gantt chart for the schedule is:

P,

Py

P

Waiting time for P, = 6, P,=0.P;=3

» Average waiting time: (6 +0+3)/3=3

Much better than previous case.
Convoy effect short process behind long process

9

Shortest-Job-First (SJF) Scheduling

» Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time.

* Two schemes:
— nonpreemptive — once CPU given to the process it cannot

be preempted until completes its CPU burst.

— preemptive — if a new process arrives with CPU burst
length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

« SJF is optimal — gives minimum average waiting
time for a given set of processes.

10

Example of Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P; 4.0 1
P, 5.0 4
» SJF (preemptive)
P, | P, |P, | P, P, P,
% % I L e
0 2 4 5 7 11 16

» Average waiting time=(9+ 1+ 0+2)/4=3
11

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 Z
P; 4.0 1
P, 5.0 Z
* SJF (non-preemptive)
P, P, P, P,
———+—+— 1
0 3 7 8 12 16

» Average waiting time=(0+6+3+7)/4=4
12

Determining Length of Next CPU Burst

» Can only estimate the length.

* Can be done by using the length of previous
CPU bursts, using exponential averaging.
1. t, =actual length of n” CPU burst
2. 7,,, =predicted value for the next CPU burst
3. 0,05 a <1
4. Define:

Tn+l = tn + (1 _a)z-n

13

Examples of Exponential Averaging

o =0
~ Tar1 T Ty
— Recent history does not count.
o =1
= Tan T
— Only the actual last CPU burst counts.
If we expand the formula, we get:
T =ttt -o)at +...
Hl-a)ot; + ..
+H(1 - o),
Since both o and (1 - o) are less than or equal to 1,
each successive term has less weight than its
predecessor.

14

Priority Scheduling

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority).

— Preemptive

— Non-preemptive

SJF 1s a priority scheduling where priority is the
predicted next CPU burst time.

Problem = Starvation — low priority processes may
never execute.

Solution = Aging — as time progresses increase the
priority of the process.

15

Round Robin (RR)

Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

If there are n processes in the ready queue and the
time quantum is ¢, then each process gets 1/n of the
CPU time in chunks of at most ¢ time units at once.
No process waits more than (n-1)g time units.
Performance

— ¢ large = FIFO

— ¢ small = ¢ must be large with respect to context switch,
otherwise overhead is too high.

16

Example of RR with Time Quantum = 20

Process Burst Time

P, 53
P, 17
P, 68
P, 24

* The Gantt chart is:

P, | Py | Py | P, | P | Py | P | P | Py | Py

0 20 37 57 77 97 117 121 134 154 162

Typically, higher average turnaround than
SJF, but better interactive response.

17

Multilevel Queue

Ready queue is partitioned into separate queues:
e.g., foreground (interactive), background (batch)
Each queue has its own scheduling algorithm,
e.g., foreground — RR, background — FCFS
Scheduling must be done between the queues.

— Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

— Time slice — each queue gets a certain amount of CPU
time which it can schedule amongst its processes; e.g.,
80% to foreground in RR, 20% to background in FCFS

18

Multi-queue priority scheduling

Queue Runable processes
headers A

Priority 4 1 1 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

A scheduling algorithm with four priority classes
19

Multilevel Feedback Queue

» A process can move between the various queues;

— aging can be implemented this way.
» Multilevel-feedback-queue scheduler defined by the

following parameters:

— number of queues

— scheduling algorithms for each queue

— method used to determine when to upgrade a process

— method used to determine when to demote a process

— method used to determine which queue a process will
enter when that process needs service

20

10

Example of Multilevel Feedback Queue

» Three queues:
— O, — time quantum 8 milliseconds
— O, — time quantum 16 milliseconds
- 0, - FCFS

* Scheduling

— A new job enters queue O, which is served FCFS. When
it gains CPU, job receives 8 milliseconds. If it does not
finish in 8 milliseconds, job is moved to queue Q.

— At Q, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q,.

21

Multilevel Feedback Queues

quantum =8

quantum =16 G:
FCFS ?

22

Y

Y

11

Multiple-Processor Scheduling

* CPU scheduling more complex when
multiple CPUs are available.

» Homogeneous processors within a
multiprocessor.

* Load sharing

23

Real-Time Scheduling

» Hard real-time systems — required to
complete a critical task within a guaranteed
amount of time.

 Soft real-time computing — requires that
critical processes receive priority over less
fortunate ones.

24

12

Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
A L o__. threads of real-
time LWPs
Q-
system kernel
Q_ service
threads
Qr
interactive and kernel
time sharing o_ threads of
interactive and
time-sharing
LWPs
Qr
" r
lgwest last

Windows 2000

Priority
31

MNext thread to run

System
priorities 24

16

o]

¥
-G
—0-O
—0-O
-0
prlii?:ires _O_O_O_O_O_o
—O—-0O-0
—O

1
‘ero page thread ~0

Idle thread

Windows 2000 supports 32 priorities for threads
26

Windows 2000 Priorities

real- . above below idle

time high normal o normal priority
time-critical 3 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10]] 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

= ——————— |

27

UNIX Scheduler

Highgst -
pr|0r|ty;lj : 215 \
4 Waiting for disk /O —O Process walting
-3 Waiting for disk buffer in kernel mode
2 Waiting for terminal input
1 Waiting for terminal output —O
0 Waiting for child to exist
0 User priority 0 |
1 User priority 1 — OO
2 User priority 2 P::TS: nw.,?ji::g
3 User priority 3 — O
A . ~l
LowastT) Ar] r
priority Process queued

on priority level 3

The UNIX scheduler is based on a multilevel queue structure
28

	CPU Scheduling
	CPU - I/O Burst Cycle
	Basic Concepts
	CPU Scheduler
	Scheduling Metrics
	Scheduling Algorithm Goals
	Dispatcher
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of Preemptive SJF
	Example of Non-Preemptive SJF
	Determining Length of Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 20
	Multilevel Queue
	Multi-queue priority scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Multiple-Processor Scheduling
	Real-Time Scheduling
	Solaris 2 Scheduling
	Windows 2000
	Windows 2000 Priorities
	UNIX Scheduler

