
1

1

Processes and Threads

Chapter 2

Today
2.1 Processes 
2.2 Threads

Next week 
2.3 Inter-process communication
2.4 Classical IPC problems

Week 3
2.5 Scheduling

2

Process Concept

• An operating system executes a variety 
of programs:
– Batch system – jobs
– Time-shared systems – user programs or 

tasks
• Process – a program in execution



2

3

Processes
The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

4

Process Concept

• A process includes:
– program counter 
– code segment
– stack segment
– data segment

• Process = Address Space
+ One thread of

control

Stack

Text

Heap

Auxiliary
regions

0

2N

Address space



3

5

Process Creation

Principal events that cause process creation
1. System initialization
2. Execution of a process creation system 

call
3. User request to create a new process
4. Initiation of a batch job

6

Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)



4

7

Process Hierarchies

• Parent creates a child process, child processes 
can create its own process

• Forms a hierarchy
– UNIX calls this a "process group"

• Windows has no concept of process hierarchy
– all processes are created equal

8

Process States (1)

• Possible process states
– running
– blocked
– ready

• Transitions between states shown



5

9

Process Scheduling Queues

• Ready queue – set of all processes residing in 
main memory, ready and waiting to execute.

• Device queues – set of processes waiting for an 
I/O device.

• Processes migrate between the various queues 
during their lifetime.

10

Ready Queue And Various I/O Device Queues



6

11

Processes migrate between queues

12

Implementation of Processes (1)

Fields of a process table entry (also called PCB –
Process Control Block)



7

13

Context Switch

• When CPU switches to another process, the 
system must save the state of the old 
process and load the saved state for the new 
process.

• Context-switch time is overhead; the system 
does no useful work while switching.

• Time dependent on hardware support.

14

CPU Switch From Process to Process



8

15

Cooperating Processes

• Sequential programs consist of a single process
• Concurrent applications consist of multiple 

cooperating processes that execute concurrently
• Advantages

– Can exploit multiple CPUs (hardware concurrency) for 
speeding up application

– Application can benefit from software concurrency, e.g. 
web servers, window systems

16

Cooperating processes cont’d
• Cooperating processes need to share information 

(data)
• Since each process has its own address space, 

operating system mechanisms are needed to let 
processes exchange information

• Two paradigms for cooperating processes
– Shared Memory

• OS enables two independent processes to have a shared 
memory segment in their address spaces

– Message-passing
• OS provides mechanisms for processes to send and receive 

messages 

• Next class will focus on concurrent programming 



9

17

Threads: Motivation

• Traditional processes created and managed 
by the OS kernel 

• Process creation expensive – e.g., fork
system call 

• Context switching expensive
• Cooperating processes - no need for 

memory protection, i.e., separate address 
spaces

18

Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads



10

19

The Thread Model (2)

• Items shared by all threads in a process
• Items private to each thread

20

The Thread Model (3)

Each thread has its own stack



11

21

Threads

• Execute in same address space
– separate execution stack, share access to code 

and (global) data
• Smaller creation and context-switch time
• Can exploit fine-grain concurrency
• Easier to write programs that use 

asynchronous I/O or communication

22

Thread Usage (1)

A word processor with three threads



12

23

Thread Usage (2)

A multithreaded Web server

24

Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates 
results

Requests

Receipt &
queuing



13

25

Threads cont’d

• User-level vs kernel-level threads
– kernel not aware of threads created by user-

level thread package (e.g. Pthreads), language 
(e.g. Java)

– user-level threads typically multiplexed on top 
of kernel level threads in a user-transparent 
fashion 

26

User-Level Threads

• Thread management done by user-level 
threads library

• Examples
- POSIX Pthreads
- Mach C-threads
- Solaris threads
- Java threads



14

27

Implementing Threads in User Space

A user-level threads package

28

Kernel Threads

• Supported by the Kernel

• Examples
- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux



15

29

Implementing Threads in the Kernel

A threads package managed by the kernel

30

Hybrid Implementations

Multiplexing user-level threads onto kernel-
level threads



16

31

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

32

Many-to-One

• Many user-level threads mapped to single 
kernel thread.
– If one user-level thread makes a blocking 

system call, the entire process is blocked even 
though other user-level threads may be “ready”

• Used on systems that do not support kernel 
threads.



17

33

Many-to-One Model

34

One-to-One

• Each user-level thread maps to kernel 
thread.

• Examples
- Windows 95/98/NT/2000
- OS/2



18

35

One-to-one Model

36

Many-to-Many Model

• Allows many user level threads to be 
mapped to many kernel threads.

• Allows the  operating system to create a 
sufficient number of kernel threads.

• Solaris 2 
• Windows NT/2000 with the ThreadFiber

package



19

37

Many-to-Many Model

38

Pthreads

• a POSIX standard (IEEE 1003.1c) API for 
thread creation and synchronization.

• API specifies behavior of the thread library, 
implementation is up to development of the 
library.

• Common in UNIX operating systems.



20

39

Solaris 2 Threads

40

Solaris Process



21

41

Windows 2000 Threads

• Implements the one-to-one mapping.
• Each thread contains

- a thread id
- register set
- separate user and kernel stacks
- private data storage area

42

Linux Threads

• Linux refers to them as tasks rather than 
threads.

• Thread creation is done through clone() 
system call.

• Clone() allows a child task to share the 
address space of the parent task (process)



22

43

Java Threads

• Java threads may be created by:
– Extending Thread class
– Implementing the Runnable interface

• Java threads are managed by the JVM.

44

Creating and Using threads 

• Pthreads Multi-threading Library
– Supported on Solaris, Linux, Windows (maybe)
– pthread_create, pthread_join, pthread_self, 

pthread_exit, pthread_detach

• Java
– provides a Runnable interface and a Thread class as part 

of standard Java libraries
• users program threads by  implementing the Runnable

interface or extending the Thread class



23

45

Java thread constructor and management 
methods

Thread(ThreadGroup group, Runnable target, String name) 
Creates a new thread in the SUSPENDED state, which will belong to group and be 
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise 
its own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE. 

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.
destroy()

Destroy the thread.

46

Creating threads

class Simple implements Runnable {
public void run() {

System.out.println(“this is a thread”);
}

}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative  strategy: Extend Thread class (not recommended
unless you are creating a new type of  Thread) 



24

47

Race Conditions

int count = 100;   // global

increment ( ) {
int temp;

temp = count;
temp = temp + 1;
count = temp;

}

Consider two threads T1 and T2 repeatedly executing the code below

We have a race condition if two processes or threads want to access
the same item in shared memory at the same

Thread T1             Thread T2
temp = 100
count = 101

temp = 101
count = 102

temp = 102
temp = 102

count = 103
count = 103

Time

48

Assignment 1

• Three experiments
– All you have to do is compile and run 

programs
– Linux/Solaris

• First two experiments illustrate differences 
between processes and threads

• Third experiment shows a race condition 
between two threads


	Processes and Threads
	Process Concept
	ProcessesThe Process Model
	Process Concept
	Process Creation
	Process Termination
	Process Hierarchies
	Process States (1)
	Process Scheduling Queues
	Ready Queue And Various I/O Device Queues
	Processes migrate between queues
	Implementation of Processes (1)
	Context Switch
	CPU Switch From Process to Process
	Cooperating Processes
	Cooperating processes cont’d
	Threads: Motivation
	ThreadsThe Thread Model (1)
	The Thread Model (2)
	The Thread Model (3)
	Threads
	Thread Usage (1)
	Thread Usage (2)
	Client and server with threads
	Threadscont’d
	User-Level Threads
	Implementing Threads in User Space
	Kernel Threads
	Implementing Threads in the Kernel
	Hybrid Implementations
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Pthreads
	Solaris 2 Threads
	Solaris Process
	Windows 2000 Threads
	Linux Threads
	Java Threads
	Creating and Using threads
	Java thread constructor and management methods
	Creating threads
	Race Conditions
	Assignment 1

