
1

Transactions 1

Transactions

Operating Systems

Transactions 2

Transactions

❒ Motivation
❍ Provide atomic operations at servers that maintain

shared data for clients
❍ Provide recoverability from server crashes

❒ Properties
❍ Atomicity, Consistency, Isolation, Durability (ACID)

❒ Concepts: commit, abort

2

Transactions 3

Operations of the Account interface

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance() -> amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

create(name) -> account
create a new account with a given name

lookUp(name) -> account
return a reference to the account with the given
name

branchTotal() -> amount
return the total of all the balances at the branch

Operations of the Branch interface

Transactions 4

A client’s banking transaction

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

3

Transactions 5

Operations in Coordinator interface

openTransaction() -> trans;
starts a new transaction and delivers a unique TID trans.
This identifier will be used in the other operations in the
transaction.

closeTransaction(trans) -> (commit, abort);
ends a transaction: a commit return value indicates that
the transaction has committed; an abort return value
indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

Transactions 6

Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
transaction

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

4

Transactions 7

Concurrency control

❒ Motivation: without concurrency control, we have lost
updates, inconsistent retrievals, dirty reads, etc. (see
following slides)

❒ Concurrency control schemes are designed to allow two
or more transactions to be executed correctly while
maintaining serial equivalence

❍ Serial Equivalence is correctness criterion
• Schedule produced by concurrency control scheme should be

equivalent to a serial schedule in which transactions are executed
one after the other

❒ Schemes: locking, optimistic concurrency control, time-
stamp based concurrency control

❍ We will only study locking in this class

Transactions 8

The lost update problem

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200
balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220
b.setBalance(balance*1.1); $220
a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

5

Transactions 9

The inconsistent retrievals problem

Transaction V:
a.withdraw(100)
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100
total = total+b.getBalance() $300
total = total+c.getBalance()

b.deposit(100) $300

Transactions 10

A serially equivalent interleaving of T and U

Transaction T:
balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U:
balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance = b.getBalance() $200
b.setBalance(balance*1.1) $220

balance = b.getBalance() $220
b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80
c.withdraw(balance/10) $278

6

Transactions 11

A serially equivalent interleaving of V and W

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

total = total+c.getBalance()
...

Transactions 12

Read and write operation conflict rules

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of readoperations
does not depend on the order in which they are
executed

read write Yes Because the effect of a read and a write operation
depends on the order of their execution

write write Yes Because the effect of a pair of write operations
depends on the order of their execution

7

Transactions 13

A non-serially equivalent interleaving of
operations of transactions T and U

Transaction T: Transaction U:

x = read(i)
write(i, 10)

y = read(j)
write(j, 30)

write(j, 20)
z = read (i)

Transactions 14

A dirty read when transaction T aborts

Transaction T:
a.getBalance()
a.setBalance(balance + 10)

Transaction U:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110
balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

8

Transactions 15

Transactions T and U with exclusive locks

Transaction T:
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction U:
balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s
lock on B

closeTransaction unlock A, B

lock B

b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C

closeTransaction unlock B, C

Transactions 16

Lock compatibility

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

9

Transactions 17

Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:
(a) If the object is not already locked, it is locked and the operation

proceeds.
(b) If the object has a conflicting lock set by another transaction, the

transaction must wait until it is unlocked.
(c) If the object has a non-conflicting lock set by another transaction,

the lock is shared and the operation proceeds.
(d) If the object has already been locked in the same transaction, the

lock will be promoted if necessary and the operation proceeds.
(Where promotion is prevented by a conflicting lock, rule (b) is
used.)

2. When a transaction is committed or aborted, the server unlocks all objects
it locked for the transaction.

Transactions 18

Two-Phase Locking (1)

❒ Two-phase locking.

10

Transactions 19

Strict Two-Phase Locking (2)

❒ Strict two-phase locking.

Transactions 20

Implementing Transactions: Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and

appended block 3
c) After committing

11

Transactions 21

Implementing Transactions: Writeahead Log

❒ a) A transaction
❒ b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

Transactions 22

Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)
waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

12

Transactions 23

The wait-for graph

B

A

Waits for

Held by

Held by

T UU T

Waits for

Transactions 24

A cycle in a wait-for graph

U

V

T

13

Transactions 25

Another wait-for graph

C

T

U
V

Held by

Held by

Held by

T
U

V

W

W

B

Held by

Waits for

Transactions 26

Resolution of deadlock

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)
waits for U’s a.withdraw(200); waits for T’s
lock on B lock on A

(timeout elapses)
T’s lock on A becomes vulnerable,

unlock A, abort T
a.withdraw(200); write locks A

unlock A, B

	Transactions
	Transactions
	Operations of the Account interface
	A client’s banking transaction
	Operations in Coordinator interface
	Transaction life histories
	Concurrency control
	The lost update problem
	The inconsistent retrievals problem
	A serially equivalent interleaving of T and U
	A serially equivalent interleaving of V and W
	Read and write operation conflict rules
	A non-serially equivalent interleaving of operations of transactions T and U
	A dirty read when transaction T aborts
	Transactions T and U with exclusive locks
	Lock compatibility
	Use of locks in strict two-phase locking
	Two-Phase Locking (1)
	Strict Two-Phase Locking (2)
	Implementing Transactions: Private Workspace
	Implementing Transactions: Writeahead Log
	Deadlock with write locks
	The wait-for graph
	A cycle in a wait-for graph
	Another wait-for graph
	Resolution of deadlock

