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Time and Coordination in 
Distributed Systems

Operating Systems
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Clock Synchronization

Physical clocks drift, therefore need for clock 
synchronization algorithms

Many algorithms depend upon clock synchronization
Often we need to know the order in which two 

events occurred on two different computers
Clock synch. Algorithms – Christian, NTP, Berkeley 
algorithm, etc.

However, since we cannot perfectly synchronize 
clocks across computers, we cannot use physical 
time to order events
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Skew between computer clocks 
in a distributed system

Network
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Clock synchronization using a 
time server
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Clock synchronization algorithms

Cristian’s algorithm
p should set its time to t + Tround/2
Earliest time at which S could have placed 

its time in mt was min after p dispatched mr
Latest point at which it could do so was min

before mt arrived at p
Time by S’s clock when message arrives at p

is in range [t + min, t + Tround – min]
⌧Accuracy ±(Tround/2-min)
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An example synchronization 
subnet in an NTP implementation
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Note: Arrows denote synchronization control, numbers denote 
strata.
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Logical time & clocks

Lamport proposed using logical clocks 
based upon the “happened before” 
relation 

If two events occur at the same process, 
then they occurred in the order observed
Whenever a message is sent between 
processes, the event of sending occurred 
before the event of receiving
X happened before Y denoted by X→Y
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Events occurring at three 
processes
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Lamport’s algorithm

Each process has its own logical clock
LC1: Cp is incremented before each 
event at process p
LC2:

1. When process p sends a message it 
piggybacks on it the value  Cp

2. On receiving a message (m,t) a process q 
computes Cq = max(Cq,t) and then applies 
LC1  before timestamping the receive event
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Lamport timestamps for the 
events
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Vector timestamps for the events
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Totally ordered logical clocks

Logical clocks only impose partial ordering 
For total order, use (Ta,Pa) where Pa is 
processor id
(Ta,Pa) < (Tb,Pb) if and only if either 
Ta < Tb or (Ta = Tb and Pa < Pb)
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Distributed mutual exclusion

Central server algorithm
Ricart and Agrawal algorithm

A distributed algorithm that uses logical clocks
Ring-based algorithms

NOTE: the above algorithms are not fault-tolerant 
and not very practical. However, they illustrate 
issues in the design of distributed algorithms
Several other mutual exclusion algorithms have 
been proposed

Quorum consensus algorithms – Maekawa’s
algorithm
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Server managing a mutual exclusion 
token for a set of processes

Server
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A ring of processes transferring a 
mutual exclusion token
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Ricart and Agrawala’s algorithm

On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;
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Multicast synchronization
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Maekawa’s algorithm

Every node needs permission from the 
other nodes in its quorum before it enters 
the critical section
Quorums are constructed in such a way 

that no two nodes can be in their critical 
section at the same time
The size of each nodes quorum is 

O(sqrt(N)), which can proved to be 
optimal
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Construction of coteries 

987

654

321Consider a system with 9 nodes

The quorum for any node includes
the other nodes in the same row
and column

Node 1’s quorum = {1,2,3,4,7}
Node 2’s quorum = {1,2,3,5,8}
Node 6’s quorum = {4,5,6,3,9}

The quorum of any two nodes have 
a non-null intersection. This ensures
that two nodes cannot get permission
to enter their critical section at the same time
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Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if
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Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if
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Election Algorithms

An election is a procedure carried out to chose a 
process from a group, for example to take over 
the role of a process that has failed
Main requirement: elected process should be 
unique even if several processes start an 
election simultaneously
Algorithms:

Bully algorithm: assumes all processes know the 
identities and addresses of all the other processes
Ring-based election: processes need to know only 
addresses of their immediate neighbors 
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A ring-based election in progress
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Note: The election was started by process 17.
The highest process identifier encountered so far is 24. 
Participant processes are shown darkened
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The bully algorithm
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