
1

1

Time and Coordination in
Distributed Systems

Operating Systems

2

Clock Synchronization

aPhysical clocks drift, therefore need for clock
synchronization algorithms
`Many algorithms depend upon clock synchronization
` Often we need to know the order in which two

events occurred on two different computers
`Clock synch. Algorithms – Christian, NTP, Berkeley

algorithm, etc.
aHowever, since we cannot perfectly synchronize

clocks across computers, we cannot use physical
time to order events

2

3

Skew between computer clocks
in a distributed system

Network

4

Clock synchronization using a
time server

mr

mt
p Time server,S

3

5

Clock synchronization algorithms

a Cristian’s algorithm
` p should set its time to t + Tround/2
` Earliest time at which S could have placed

its time in mt was min after p dispatched mr
` Latest point at which it could do so was min

before mt arrived at p
` Time by S’s clock when message arrives at p

is in range [t + min, t + Tround – min]
⌧Accuracy ±(Tround/2-min)

6

An example synchronization
subnet in an NTP implementation

1

2

3

2

3 3

Note: Arrows denote synchronization control, numbers denote
strata.

4

7

Logical time & clocks

aLamport proposed using logical clocks
based upon the “happened before”
relation
`If two events occur at the same process,

then they occurred in the order observed
`Whenever a message is sent between

processes, the event of sending occurred
before the event of receiving
`X happened before Y denoted by X→Y

8

Events occurring at three
processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

5

9

Lamport’s algorithm

a Each process has its own logical clock
a LC1: Cp is incremented before each

event at process p
a LC2:

1. When process p sends a message it
piggybacks on it the value Cp

2. On receiving a message (m,t) a process q
computes Cq = max(Cq,t) and then applies
LC1 before timestamping the receive event

10

Lamport timestamps for the
events

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

6

11

Vector timestamps for the events

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

12

Totally ordered logical clocks

aLogical clocks only impose partial ordering
aFor total order, use (Ta,Pa) where Pa is

processor id
a(Ta,Pa) < (Tb,Pb) if and only if either

Ta < Tb or (Ta = Tb and Pa < Pb)

7

13

Distributed mutual exclusion

aCentral server algorithm
aRicart and Agrawal algorithm
`A distributed algorithm that uses logical clocks

aRing-based algorithms
NOTE: the above algorithms are not fault-tolerant

and not very practical. However, they illustrate
issues in the design of distributed algorithms

aSeveral other mutual exclusion algorithms have
been proposed
`Quorum consensus algorithms – Maekawa’s

algorithm

14

Server managing a mutual exclusion
token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

8

15

A ring of processes transferring a
mutual exclusion token

pn

p
2

p
3

p
4

Token

p
1

16

Ricart and Agrawala’s algorithm

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

9

17

Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

18

Maekawa’s algorithm

a Every node needs permission from the
other nodes in its quorum before it enters
the critical section
a Quorums are constructed in such a way

that no two nodes can be in their critical
section at the same time
a The size of each nodes quorum is

O(sqrt(N)), which can proved to be
optimal

10

19

Construction of coteries

987

654

321Consider a system with 9 nodes

The quorum for any node includes
the other nodes in the same row
and column

Node 1’s quorum = {1,2,3,4,7}
Node 2’s quorum = {1,2,3,5,8}
Node 6’s quorum = {4,5,6,3,9}

The quorum of any two nodes have
a non-null intersection. This ensures
that two nodes cannot get permission
to enter their critical section at the same time

20

Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

11

21

Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

22

Election Algorithms

aAn election is a procedure carried out to chose a
process from a group, for example to take over
the role of a process that has failed

aMain requirement: elected process should be
unique even if several processes start an
election simultaneously

aAlgorithms:
`Bully algorithm: assumes all processes know the

identities and addresses of all the other processes
`Ring-based election: processes need to know only

addresses of their immediate neighbors

12

23

A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown darkened

24

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3 p

4

election

answer

The election of coordinator
p2,
after the failure of p4 and then
p3

	Time and Coordination in Distributed Systems
	Clock Synchronization
	Skew between computer clocks in a distributed system
	Clock synchronization using a time server
	Clock synchronization algorithms
	An example synchronization subnet in an NTP implementation
	Logical time & clocks
	Events occurring at three processes
	Lamport’s algorithm
	Lamport timestamps for the events
	Vector timestamps for the events
	Totally ordered logical clocks
	Distributed mutual exclusion
	Server managing a mutual exclusion token for a set of processes
	A ring of processes transferring a mutual exclusion token
	Ricart and Agrawala’s algorithm
	Multicast synchronization
	Maekawa’s algorithm
	Construction of coteries
	Maekawa’s algorithm
	Maekawa’s algorithm – cont’d
	Election Algorithms
	A ring-based election in progress
	The bully algorithm

