
1

1

Time and Coordination in 
Distributed Systems

Operating Systems

2

Clock Synchronization

Physical clocks drift, therefore need for clock 
synchronization algorithms

Many algorithms depend upon clock synchronization
Often we need to know the order in which two 

events occurred on two different computers
Clock synch. Algorithms – Christian, NTP, Berkeley 
algorithm, etc.

However, since we cannot perfectly synchronize 
clocks across computers, we cannot use physical 
time to order events



2

3

Skew between computer clocks 
in a distributed system

Network

4

Clock synchronization using a 
time server

mr

mt
p Time server,S



3

5

Clock synchronization algorithms

Cristian’s algorithm
p should set its time to t + Tround/2
Earliest time at which S could have placed 

its time in mt was min after p dispatched mr
Latest point at which it could do so was min

before mt arrived at p
Time by S’s clock when message arrives at p

is in range [t + min, t + Tround – min]
⌧Accuracy ±(Tround/2-min)

6

An example synchronization 
subnet in an NTP implementation

1

2

3

2

3 3

Note: Arrows denote synchronization control, numbers denote 
strata.



4

7

Logical time & clocks

Lamport proposed using logical clocks 
based upon the “happened before” 
relation 

If two events occur at the same process, 
then they occurred in the order observed
Whenever a message is sent between 
processes, the event of sending occurred 
before the event of receiving
X happened before Y denoted by X→Y

8

Events occurring at three 
processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time



5

9

Lamport’s algorithm

Each process has its own logical clock
LC1: Cp is incremented before each 
event at process p
LC2:

1. When process p sends a message it 
piggybacks on it the value  Cp

2. On receiving a message (m,t) a process q 
computes Cq = max(Cq,t) and then applies 
LC1  before timestamping the receive event

10

Lamport timestamps for the 
events

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical 
time



6

11

Vector timestamps for the events

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical 
time

12

Totally ordered logical clocks

Logical clocks only impose partial ordering 
For total order, use (Ta,Pa) where Pa is 
processor id
(Ta,Pa) < (Tb,Pb) if and only if either 
Ta < Tb or (Ta = Tb and Pa < Pb)



7

13

Distributed mutual exclusion

Central server algorithm
Ricart and Agrawal algorithm

A distributed algorithm that uses logical clocks
Ring-based algorithms

NOTE: the above algorithms are not fault-tolerant 
and not very practical. However, they illustrate 
issues in the design of distributed algorithms
Several other mutual exclusion algorithms have 
been proposed

Quorum consensus algorithms – Maekawa’s
algorithm

14

Server managing a mutual exclusion 
token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1



8

15

A ring of processes transferring a 
mutual exclusion token

pn

p
2

p
3

p
4

Token

p
1

16

Ricart and Agrawala’s algorithm

On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;



9

17

Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

18

Maekawa’s algorithm

Every node needs permission from the 
other nodes in its quorum before it enters 
the critical section
Quorums are constructed in such a way 

that no two nodes can be in their critical 
section at the same time
The size of each nodes quorum is 

O(sqrt(N)), which can proved to be 
optimal



10

19

Construction of coteries 

987

654

321Consider a system with 9 nodes

The quorum for any node includes
the other nodes in the same row
and column

Node 1’s quorum = {1,2,3,4,7}
Node 2’s quorum = {1,2,3,5,8}
Node 6’s quorum = {4,5,6,3,9}

The quorum of any two nodes have 
a non-null intersection. This ensures
that two nodes cannot get permission
to enter their critical section at the same time

20

Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if



11

21

Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

22

Election Algorithms

An election is a procedure carried out to chose a 
process from a group, for example to take over 
the role of a process that has failed
Main requirement: elected process should be 
unique even if several processes start an 
election simultaneously
Algorithms:

Bully algorithm: assumes all processes know the 
identities and addresses of all the other processes
Ring-based election: processes need to know only 
addresses of their immediate neighbors 



12

23

A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.
The highest process identifier encountered so far is 24. 
Participant processes are shown darkened

24

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3 p

4

election

answer

The election of coordinator 
p2, 
after the failure of p4 and then 
p3


	Time and Coordination in Distributed Systems
	Clock Synchronization
	Skew between computer clocks in a distributed system
	Clock synchronization using a time server
	Clock synchronization algorithms
	An example synchronization subnet in an NTP implementation
	Logical time & clocks
	Events occurring at three processes
	Lamport’s algorithm
	Lamport timestamps for the events
	Vector timestamps for the events
	Totally ordered logical clocks
	Distributed mutual exclusion
	Server managing a mutual exclusion token for a set of processes
	A ring of processes transferring a mutual exclusion token
	Ricart and Agrawala’s algorithm
	Multicast synchronization
	Maekawa’s algorithm
	Construction of coteries
	Maekawa’s algorithm
	Maekawa’s algorithm – cont’d
	Election Algorithms
	A ring-based election in progress
	The bully algorithm

