Time and Coordination in
Distributed Systems

Operating Systems

Clock Synchronization

Physical clocks drift, therefore need for clock
synchronization algorithms
Many algorithms depend upon clock synchronization

Often we need to know the order in which two
events occurred on two different computers

Clock synch. Algorithms — Christian, NTP, Berkeley
algorithm, etc.
However, since we cannot perfectly synchronize
clocks across computers, we cannot use physical
time to order events

Skew between computer clocks
in a distributed system

SEECERCERY

Network

Clock synchronization using a
time server

Ck i@

p Time server,S

S ch ch3

Clock synchronization algorithms

Cristian’s algorithm
p should set its time to t + T,,,,4/2

Earliest time at which S could have placed
its time in m,was min after p dispatched m,

Latest point at which it could do so was min
before m, arrived at p

Time by S’s clock when message arrives at p
isinrange [t+ min, t+ T — min]
Accuracy (T, nq/2-min)

round

An example synchronization
subnet in an NTP implementation

N\
/7 \ \

Note: Arrows denote synchronization control, numbers denote
strata.

Logical time & clocks

Lamport proposed using logical clocks
based upon the “happened before”
relation
If two events occur at the same process,
then they occurred in the order observed

Whenever a message is sent between
processes, the event of sending occurred
before the event of receiving

X happened before Y denoted by X—Y

Events occurring at three
processes

P1

o * Physica
time
c N

P3 * °
e f

Lamport’s algorithm

Each process has its own logical clock

LC1: C,is incremented before each
event at process p

LC2:

When process p sends a message it
piggybacks on it the value C,

On receiving a message (m,t) a process q
computes C, = max(C, t) and then applies
LC1 before timestamping the receive event

Lamport timestamps for the
events

P4

Physical
L
P2 c d time
my
5

[OIE JEEEN
T N
/
w
N

Vector timestamps for the events

(.2,1 0) (2,2,0) Physical
D) g q time
my
(0,0,1) (222)

Ps ° .
e f

P

Totally ordered logical clocks

Logical clocks only impose partial ordering
For total order, use (T,,P,) where P, is
processor id

(T,,P,) < (T,,P,) if and only if either
T,<T,or(T,=T,and P, < P,)

Distributed mutual exclusion

Central server algorithm
Ricart and Agrawal algorithm
A distributed algorithm that uses logical clocks
Ring-based algorithms
NOTE: the above algorithms are not fault-tolerant

and not very practical. However, they illustrate
issues in the design of distributed algorithms

Several other mutual exclusion algorithms have
been proposed

Quorum consensus algorithms — Maekawa’s
algorithm

Server managing a mutual exclusion
token for a set of processes

Server
Queue of

requests————

3. Grant

token
1. Request
token 2. Release p
p1 token 4
p

P, 3

A ring of processes transferring a
mutual exclusion token

P
a :
2
pn
p
3
p
/4
N
\\5_/

Ricart and Agrawala’s algorithm

On initialization
state = RELEASED;
To enter the section
state = WANTED; ‘
Multicast request to all processes; ‘ request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N — 1));
state = HELD;

On receipt of a request <T, p;> at p;(i#))
if (state = HELD or (state = WANTED and (T, p)) < (T, p,)))
then
queue request from p; without replying;
else
reply immediately to p;
end if
To exit the critical section
state = RELEASED;
reply to any queued requests;

Multicast synchronization

'01 Reply
eply 3
R
34
41

eply
) },4
2

O

%

Maekawa’s algorithm

Every node needs permission from the
other nodes in its before it enters
the critical section

Quorums are constructed in such a way
that no two nodes can be in their critical
section at the same time

The size of each nodes quorum is
O(sgrt(N)), which can proved to be
optimal

Construction of coteries

Consider a system with 9 nodes 1

The quorum for any node includes 4
the other nodes in the same row

and column 7

Node 1’s quorum = {1,2,3,4,7}
Node 2’s quorum = {1,2,3,5,8}
Node 6’s quorum = {4,5,6,3,9}

The quorum of any two nodes have

a non-null intersection. This ensures

that two nodes cannot get permission

to enter their critical section at the same time

Maekawa’s algorithm

On initialization
state := RELEASED;
voted = FALSE;

For p, to enter the critical section
state == WANTED;
Multicast request to all processes in V, — {p,};
Wait until (number of replies received = (K — 1));
state := HELD;
On receipt of a request from p, at p; (i #)
if (state = HELD or voted = TRUE)
then
queue request from p; without replying;
else
send reply to p;
voted := TRUE;
end if

20

10

Maekawa’s algorithm - cont’d

For p; to exit the critical section
state = RELEASED;
Multicast release to all processes in V, — {p,};
On receipt of a release from p; at p; (i #)
if (queue of requests is non-empty)
then
remove head of queue — from p,, say;
send reply to p,;
voted := TRUE;
else
voted := FALSE;
end if

21

Election Algorithms

An election is a procedure carried out to chose a
process from a group, for example to take over
the role of a process that has failed

Main requirement: elected process should be
unique even if several processes start an
election simultaneously

Algorithms:

Bully algorithm: assumes all processes know the
identities and addresses of all the other processes

Ring-based election: processes need to know only
addresses of their immediate neighbors

22

11

A ring-based election in progress

3 —~~

e 7
/ N\

24

\ 1

8) //

7\\ /

©
R

Note: The election was started by process 17.

The highest process identifier encountered so far is 24.

Participant processes are shown darkened

23
election
The election of coordinator m s
p Stage 1 ><
2 answer
after the failure of p, and then pf\ﬂ/pa P
P3 answer
election
Stage 2
answer
P1 pzv P P
timeout
Stage 3 >< ><
p1 p2 p3 p4
Eventually.....
coordinator
‘/_\ C
Stage 4 >< ><
p1 pz pS p4
24

12

	Time and Coordination in Distributed Systems
	Clock Synchronization
	Skew between computer clocks in a distributed system
	Clock synchronization using a time server
	Clock synchronization algorithms
	An example synchronization subnet in an NTP implementation
	Logical time & clocks
	Events occurring at three processes
	Lamport’s algorithm
	Lamport timestamps for the events
	Vector timestamps for the events
	Totally ordered logical clocks
	Distributed mutual exclusion
	Server managing a mutual exclusion token for a set of processes
	A ring of processes transferring a mutual exclusion token
	Ricart and Agrawala’s algorithm
	Multicast synchronization
	Maekawa’s algorithm
	Construction of coteries
	Maekawa’s algorithm
	Maekawa’s algorithm – cont’d
	Election Algorithms
	A ring-based election in progress
	The bully algorithm

