
1

1

Time and Coordination in 
Distributed Systems

Operating Systems
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Clock Synchronization

aPhysical clocks drift, therefore need for clock 
synchronization algorithms
`Many algorithms depend upon clock synchronization
` Often we need to know the order in which two 

events occurred on two different computers
`Clock synch. Algorithms – Christian, NTP, Berkeley 

algorithm, etc.
aHowever, since we cannot perfectly synchronize 

clocks across computers, we cannot use physical 
time to order events
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Skew between computer clocks 
in a distributed system

Network
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Clock synchronization using a 
time server
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Clock synchronization algorithms

a Cristian’s algorithm
` p should set its time to t + Tround/2
` Earliest time at which S could have placed 

its time in mt was min after p dispatched mr
` Latest point at which it could do so was min

before mt arrived at p
` Time by S’s clock when message arrives at p

is in range [t + min, t + Tround – min]
⌧Accuracy ±(Tround/2-min)
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An example synchronization 
subnet in an NTP implementation
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Note: Arrows denote synchronization control, numbers denote 
strata.
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Logical time & clocks

aLamport proposed using logical clocks 
based upon the “happened before” 
relation 
`If two events occur at the same process, 

then they occurred in the order observed
`Whenever a message is sent between 

processes, the event of sending occurred 
before the event of receiving
`X happened before Y denoted by X→Y
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Events occurring at three 
processes
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Lamport’s algorithm

a Each process has its own logical clock
a LC1: Cp is incremented before each 

event at process p
a LC2:

1. When process p sends a message it 
piggybacks on it the value  Cp

2. On receiving a message (m,t) a process q 
computes Cq = max(Cq,t) and then applies 
LC1  before timestamping the receive event
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Lamport timestamps for the 
events
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Vector timestamps for the events
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Totally ordered logical clocks

aLogical clocks only impose partial ordering 
aFor total order, use (Ta,Pa) where Pa is 

processor id
a(Ta,Pa) < (Tb,Pb) if and only if either 

Ta < Tb or (Ta = Tb and Pa < Pb)
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Distributed mutual exclusion

aCentral server algorithm
aRicart and Agrawal algorithm
`A distributed algorithm that uses logical clocks

aRing-based algorithms
NOTE: the above algorithms are not fault-tolerant 

and not very practical. However, they illustrate 
issues in the design of distributed algorithms

aSeveral other mutual exclusion algorithms have 
been proposed
`Quorum consensus algorithms – Maekawa’s

algorithm
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Server managing a mutual exclusion 
token for a set of processes

Server
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A ring of processes transferring a 
mutual exclusion token
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Ricart and Agrawala’s algorithm

On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;
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Multicast synchronization
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Maekawa’s algorithm

a Every node needs permission from the 
other nodes in its quorum before it enters 
the critical section
a Quorums are constructed in such a way 

that no two nodes can be in their critical 
section at the same time
a The size of each nodes quorum is 

O(sqrt(N)), which can proved to be 
optimal
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Construction of coteries 

987

654

321Consider a system with 9 nodes

The quorum for any node includes
the other nodes in the same row
and column

Node 1’s quorum = {1,2,3,4,7}
Node 2’s quorum = {1,2,3,5,8}
Node 6’s quorum = {4,5,6,3,9}

The quorum of any two nodes have 
a non-null intersection. This ensures
that two nodes cannot get permission
to enter their critical section at the same time
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Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if
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Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if
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Election Algorithms

aAn election is a procedure carried out to chose a 
process from a group, for example to take over 
the role of a process that has failed

aMain requirement: elected process should be 
unique even if several processes start an 
election simultaneously

aAlgorithms:
`Bully algorithm: assumes all processes know the 

identities and addresses of all the other processes
`Ring-based election: processes need to know only 

addresses of their immediate neighbors 
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A ring-based election in progress
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Note: The election was started by process 17.
The highest process identifier encountered so far is 24. 
Participant processes are shown darkened
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The bully algorithm
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