
Network Programming using
sockets

Distributed Software Systems
Prof. Sanjeev Setia

APIs for TCP/IP

� TCP/IP is a protocol designed to operate in multi-
vendor environment

� interface between TCP/IP and applications loosely
speci�ed

� application interfaces

{ BSD UNIX: socket interface
{ AT&T: TLI interface

� TCP/IP software inside kernel invoked by system
calls

� UNIX I/O facilities extended with TCP/IP speci�c
calls

9

The Socket Interface

� provides functions that support network
communication using many possible protocols

{ PF INET is one protocol family supported by
sockets

{ TCP and UDP are protocols in PF INET family

� socket is the abstraction for network communication

� a socket is identi�ed by socket descriptor

� system data structure for socket

{ family (e.g., PF INET)
{ service (e.g., SOCK STREAM)
{ Local IP address, Local Port
{ Remote IP address, Remote Port

� passive socket: socket used by a server to wait for
incoming connections ; active socket: socket used
by client to initiate a connection

10

Endpoint Addresses

� TCP/IP protocols de�ne a communication endpoint
to consist of an IP address and a protocol port
number

� other protocol families have other de�nitions

� socket abstractions supports the concept of address
family which allows di�erent protocols to have their
own address representations

� TCP/IP protocols use a single address
representation with address family denoted by
AF INET

11

E
n
d
p
o
in
t
A
d
d
re
ss
e
s
co
n
t'
d

�

st
ru
ct
u
re
fo
r
A
F
IN
E
T
ad
d
re
ss
es

s
t
r
u
c
t
s
o
c
k
a
d
d
r
_
i
n
{

/
*
s
t
r
u
c
t
t
o
h
o
l
d
a
n
a
d
d
r
e
s
s

*
/

u
_
c
h
a
r
s
i
n
_
l
e
n
;

/
*
t
o
t
a
l
l
e
n
g
t
h

*
/

u
_
s
h
o
r
t
s
i
n
_
f
a
m
i
l
y
;

/
*
t
y
p
e
o
f
a
d
d
r
e
s
s

*
/

u
_
s
h
o
r
t
s
i
n
_
p
o
r
t
;

/
*
p
r
o
t
o
c
o
l
p
o
r
t
n
u
m
b
e
r

*
/

s
t
r
u
c
t
i
n
_
a
d
d
r
s
i
n
_
a
d
d
r
;

/
*
I
P
a
d
d
r
e
s
s

*
/

c
h
a
r
s
i
n
_
z
e
r
o
[
8
]
;

/
*
u
n
u
s
e
d
(
s
e
t
t
o
z
e
r
o
)

*
/

}
;

�

if
pr
og
ra
m
u
si
n
g
m
ix
tu
re
of
pr
ot
o
co
ls
,
pr
og
ra
m
m
er
m
u
st
b
e
ca
re
fu
l
si
n
ce

n
ot
al
l
ad
d
re
ss
es
h
av
e
th
e
sa
m
e
si
ze

1
2

System Calls

� socket

{ used to create new socket
{ arguments: protocol family (e.g. PF INET),
protocol or service (i.e., stream or datagram)

{ returns socket descriptor

� connect:

{ client calls connect to establish an active
connection to the server

{ argument to connect speci�es remote endpoint

� write

{ servers and clients use write to send data across
a TCP connection

{ arguments: socket descriptor, address of data,
length of data

13

System Calls cont'd

� read

{ used to receive data from a TCP connection
{ arguments: socket, bu�er, length of bu�er
{ read blocks if no data; if more data than �ts in
bu�er, it only extracts enough to �ll the bu�er;
if less than bu�er length, it extracts all the data
and returns number of bytes read

� read and write can also be used with UDP but
di�erent behavior

� close: used to deallocate socket; deleted when last
process that is using socket does a close

� bind

{ used to specify a local endpoint address for a
socket

{ uses sockaddr in structure

14

System Calls cont'd

� listen

{ used by connection-oriented servers to put socket
in passive mode

{ arguments: socket, size of queue for socket
connection requests

� accept

{ creates a new socket for each connection request
{ returns descriptor of new socket to its calller

� UDP calls:

{ send, sendto, sendmsg
{ recv, recvfrom, recvmsg

15

Integer Conversion

� standard representation for binary integers used in
TCP/IP protocol headers: network byte order, MSB
�rst

� e.g. the protocol port �eld in struct sockaddr in
uses network byte order

� host's integer representation maybe di�erent

� conversion routines: htons, htonl, ntohl, ntohs
should be used for portability

16

Client Software

conceptually simpler than servers because

� do not have to handle concurrent interactions with
multiple servers

� usually not privileged software) don't have to be
as careful

� no authentication, protection, etc.

17

Locating the server

server's IP address and port number needed

� can be speci�ed as a constant in the program

� have the user specify it as an argument when
invoking client

� read from a �le on disk

� use a protocol to �nd the server (e.g. a broadcast
message to which servers respond)

18

Parsing address argument

� address argument typically is a hostname like
cs.gmu.edu or IP address in dotted decimal notation
like 129.174.29.34

� need to specify address using structure sockaddr in

� library routines inet addr and gethostbyname used
for conversions

struct hostent {

char *hname;

char **h_aliases;

int h_addrtype;

int h_length;

char **h_addr_list;

};

#define h_addr h_addr_list[0];

19

EXAMPLE:

struct hostent *hptr;

char *name = ``cs.gmu.edu'';

if (hptr = gethostbyname(name)) {

/* IP address is in hptr->h_addr */

} else {

/* handle error */

}

� inet addr converts dotted decimal IP address into
binary

20

Client Software cont'd

� looking up a well known port by name

� struct servent de�ned in netdb.h in the same way as struct

hostent

struct servent *sptr;

if (sptr = getservbyname(``smtp'',``tcp'')){

/* port number is now in sptr->s_port */

} else {

/* handle error */

}

� NOTE: getservbyname returns protocol port in
network byte order

21

Client Software cont'd

� looking up a protocol by name

� struct protoent de�ned in netdb.h

struct protoent *pptr;

if (pptr = getprotobyname(``udp'')){

/* official protocol number is in pptr->p_proto */

} else {

/* handle error */

}

22

TCP client algorithm

1. Find IP address and protocol number of server

2. allocate a socket

3. specify that the connection needs an arbitrary,
unused protocol port on local machine and allow
TCP to select one

4. Connect the socket to the server

5. Communicate with the server using application-level
protocol

6. Close the connection

23

TCP client cont'd

� Allocating a socket

#include <sys/types.h>

#include <sys/socket.h>

int s; /* socket descripto */

s = socket(PF_INET,SOCK_STREAM, 0);

� Choosing a local port number

{ conicts have to be avoided
{ happens as a side-e�ect to connect call

� choosing a local IP address

{ a problem for hosts connected to multiple
networks

{ chosen automatically by TCP/IP at time of
connection

24

Connecting a TCP socket to a server

retcode = connect(s,remaddr,remaddrlen)

� connect performs four tasks

1. tests speci�ed socket is valid and not already
connected

2. �lls in remote address in socket from second
argument

3. chooses a local endpoint address for socket (if it
does not have one)

4. initiates a connection and returns value to the
caller

25

Communicating with the server using

TCP: Example

#define BLEN 120

char *req = ``request of some sort'';

char buf[BLEN];

char *bptr;

int n;

int buflen;

bptr = buf;

buflen = BLEN;

/* send request */

write(s,req,strlen(req);

/* read response (may come in several pieces) */

while ((n = read(s,bptr,buflen) > 0) {

bptr += n;

buflen -= n;

}

26

Closing a TCP connection

� partial close needed because client may not know
when all the data from the server has arrived and
server may not know if client will send another
request

� shutdown call

errcode = shutdown(s,direction);

� direction = 0: no further input, 1: no further
output, 2: shutdown in both directions

27

Programming a UDP client

1. Find IP address and protocol number of server

2. Allocate a socket

3. Specify that the connection needs an arbitrary,
unused protocol port on local machine and allow
UDP to select one

4. Specify the server to which messages must be sent

5. Communicate with the server using application-level
protocol

6. Close the socket

28

Connected and Unconnected UDP

sockets

� with UDP, connected sockets do not mean a
\connection" was established

� connected sockets) server speci�ed once

� unconnected sockets) server speci�ed each time

� read and write: message transfer NOT streams

� close does not inform remote endpoint of any actions

� UDP is unreliable

29

Examples

� TCP and UDP clients for services

{ DAYTIME
{ TIME
{ ECHO

� connectTCP and connectUDP procedures invoke
connectsock

30

Issues in Server Design

� Concurrent vs iterative servers: handle multiple
requests concurrently or one after the other?

� Connection-oriented vs connection-less servers:
TCP or UDP?

� Stateful vs stateless servers

1

Iterative, connection-oriented server

� Algorithm

1. Create a socket and bind to the well-known
address for the service being o�ered

2. Place the socket in passive mode
3. Accept the next connection request from the

socket, and obtain a new socket for the
connection

4. Repeatedly read a request from the client,
formulate a response, and send a reply back to
the client according to the application protocol

5. When �nished with a particular client, close the
connection and return to step 3 to accept a new
connection

� servers should specify INADDR ANY as internet
address while binding

� needed for hosts with multiple IP addresses

2

Iterative, connection-less servers

� Algorithm

1. Create a socket and bind to the well-known
address for the service being o�ered

2. Repeatedly read the next request from a client,
formulate a response, and send a reply back to
the client according to the application protocol

� cannot use connect (unlike clients)

� use sendto and recvfrom

3

Concurrent, Connection-less servers

� Algorithm

Master 1. Create a socket and bind to the well-
known address for the service being o�ered.
Leave the socket unconnected.

Master 2. Repeatedly call recvfrom to receive the
next request from a client, and create a new slave
thread/process to handle the response

Slave 1. Receive a speci�c request upon creation
as well as access to the socket

Slave 2. Form a reply according to the application
protocol and send it back to the client using
sendto

Slave 3. Exit

� cost of process/thread creation for each client
request

� while using threads, use thread-safe functions and
be careful while passing arguments to threads

4

Concurrent, Connection-oriented servers

� Algorithm

Master 1. Create a socket and bind to the well-
known address for the service being o�ered.
Leave the socket unconnected.

Master 2. Place the socket in passive mode.
Master 3. Repeatedly call accept to receive the

next request from a client, and create a new
slave process/thread to handle the response

Slave 1. Receive a connection request (i.e., socket
for connection) upon creation

Slave 2. Interact with the client using the
connection: read request(s) and send back
response(s)

Slave 3. Close the connection and exit

� processes created using fork; can also use execve

5

Apparent concurrency using a single

process

� multiple processes) need to use shared memory
IPC facilities if data structures shared among
processes

� creating processes can be expensive

� threads make this easier

� can also achieve the same goal using a single process
and asynchronous I/O using select

6

Apparent concurrency using a single

process

� Algorithm

1. Create a socket and bind to the well-known port
for the service. Add the socket to the list of those
on which I/O is possible

2. Use select to wait for I/O on existing sockets
3. If original socket is ready, use accept to obtain

the next connection, and add the new socket to
the list of those on which I/O is possible

4. If some socket other than the original is ready, use
read to obtain the next request, form a response,
and use write to send the response back to the
client

5. Continue processing with step 2.

7

The Problem of Server Deadlock

� iterative server: suppose client creates a connection
but does not send any requests

� suppose client does not consume responses

� connection-oriented servers will block on write if
local bu�er full) deadlock in single process servers

8

Multi-protocol Server Design

� multiprotocol server handles service requests over
both UDP and TCP

� Motivation: allows the use of shared code for service

� asynchronous I/O needed (select system call)

� design can be iterative or concurrent (multi-process
or single-process)

9

Multi-service Server Design

� single server for multiple services

� Motivation: conserve system resources and make
maintenance easier

� Design: Iterative, concurrent, or single process
concurrent

� Connection-less or Connection-oriented

� Multi-service, Multi-protocol \super servers", e.g.
UNIX inetd

� Static or dynamic server con�guration

10

UNIX inetd super server

� con�guration �le /etc/inetd.conf

� entries: service name (from /etc/services),
socket type, protocol, wait status, userid, server
program, arguments

11

Java sockets API

• TCP socket classes
– Socket
– ServerSocket
– InetAddress

• UDP classes
– DatagramPacket
– DatagramSocket

Java Examples

A TCP Client for the Echo service
import java.io.*;
import java.net.*;

public class EchoClient {
 public static void main(String[] args) throws IOException {

 Socket echoSocket = null;
 PrintWriter out = null;
 BufferedReader in = null;

 try {
 echoSocket = new Socket("taranis", 7);
 out = new PrintWriter(echoSocket.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(
 echoSocket.getInputStream()));
 } catch (UnknownHostException e) {
 System.err.println("Don't know about host: taranis.");
 System.exit(1);
 } catch (IOException e) {
 System.err.println("Couldn't get I/O for "
 + "the connection to: taranis.");
 System.exit(1);
 }

BufferedReader stdIn = new BufferedReader(
 new InputStreamReader(System.in));

String userInput;
while ((userInput = stdIn.readLine()) != null) {
 out.println(userInput);
 System.out.println("echo: " + in.readLine());
}
out.close();
in.close();
stdIn.close();
echoSocket.close();

 }
}

A TCP Client for the Daytime service

import java.net.*;
import java.io.*;

public class DayClient1 {
 public static final int DAYTIME_PORT = 13;
 String host;
 Socket s;

 public static void main(String args[]) throws
IOException {
 DayClient1 that = new DayClient1(args[0]);
 that.go();
 }

 public DayClient1(String host) {
 this.host = host;
 }

 public void go() throws IOException {
 s = new Socket(host, DAYTIME_PORT);
 BufferedReader i = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
 System.out.println(i.readLine());
 i.close();
 s.close();
 }
}

A TCP Server for the Daytime service

import java.io.*;
import java.net.*;
import java.util.*;

public class DayServer1 {
 private ServerSocket ss;
 public static final int DAYTIME_PORT = 13;

 public static void main(String args[]) throws
IOException {
 DayServer1 d = new DayServer1();
 d.go();
 }

 public void go() throws IOException {
 Socket s = null;
 ss = new ServerSocket(DAYTIME_PORT, 5);
 for (;;) {
 s = ss.accept();
 BufferedWriter out = new BufferedWriter(
 new OutputStreamWriter(s.getOutputStream(),"8859_1"));
 out.write("Java Daytime server: " +
 (new Date()).toString() + "\n");
 out.close();
 s.close();
 }
 }
}

A Multithreaded TCP server

public class MultiServe implements Runnable {
 private ServerSocket ss;

 public static void main(String args[]) throws Exception {
 MultiServe m = new MultiServe();
 m.go();
 }

 public void go() throws Exception {
 ss = new ServerSocket(DayClient2.DAYTIME_PORT, 5);
 Thread t1 = new Thread(this, "1");
 Thread t2 = new Thread(this, "2");
 Thread t3 = new Thread(this, "3");
 t1.start(); t2.start(); t3.start();
 }

 public void run() {
 Socket s = null;
 BufferedWriter out = null;
 String myname = Thread.currentThread().getName();

 for (;;) {
 try {
 System.out.println("thread " + myname + " about to accept..");
 s = ss.accept();
 System.out.println("thread " + myname +
 " accepted a connection");
 out = new BufferedWriter(
 new OutputStreamWriter(s.getOutputStream()));
 out.write(myname + " " + new Date());
 Thread.sleep(10000);
 out.write("\n");
 out.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Another Multi-threaded Server Example

import java.net.*;
import java.io.*;

public class KKMultiServer {
 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = null;
 boolean listening = true;

 try {
 serverSocket = new ServerSocket(4444);
 } catch (IOException e) {
 System.err.println("Could not listen on port: 4444.");
 System.exit(-1);
 }

 while (listening)
 new KKMultiServerThread(serverSocket.accept()).start();

 serverSocket.close();
 }
}

import java.net.*;
import java.io.*;

public class KKMultiServerThread extends Thread {
 private Socket socket = null;

 public KKMultiServerThread(Socket socket) {
super("KKMultiServerThread");
this.socket = socket;

 }

 public void run() {

try {
 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
 BufferedReader in = new BufferedReader(

 new InputStreamReader(
 socket.getInputStream()));

 String inputLine, outputLine;
 KnockKnockProtocol kkp = new KnockKnockProtocol ();
 outputLine = kkp.processInput(null);
 out.println(outputLine);

 while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye"))
 break;

 }
 out.close();
 in.close();
 socket.close();

} catch (IOException e) {
 e.printStackTrace();
}

 }
}

A UDP Client

import java.io.*;
import java.net.*;
import java.util.*;

public class QuoteClient {
 public static void main(String[] args) throws IOException {

 if (args.length != 1) {
 System.out.println("Usage: java QuoteClient <hostname>");
 return;
 }

// get a datagram socket
 DatagramSocket socket = new DatagramSocket();

// send request
byte[] buf = new byte[256];
InetAddress address = InetAddress.getByName(args[0]);
DatagramPacket packet =

 new DatagramPacket(buf, buf.length, address, 4445);
socket.send(packet);

// get response
packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);

// display response
String received = new String(packet.getData(), 0);
System.out.println("Quote of the Moment: " + received);

socket.close();
 }
}

A UDP Quote Server

import java.io.*;

public class QuoteServer {
 public static void main(String[] args) throws IOException {
 new QuoteServerThread().start();
 }
}

import java.io.*;
import java.net.*;
import java.util.*;

public class QuoteServerThread extends Thread {

 protected DatagramSocket socket = null;
 protected BufferedReader in = null;
 protected boolean moreQuotes = true;

 public QuoteServerThread() throws IOException {
this("QuoteServerThread");

 }

 public QuoteServerThread(String name) throws IOException {
 super(name);
 socket = new DatagramSocket(4445);

 try {
 in = new BufferedReader(new FileReader("one-liners.txt"));
 } catch (FileNotFoundException e) {
 System.err.println("Could not open quote file. Serving time
instead.");
 }
 }

 public void run() {

 while (moreQuotes) {
 try {
 byte[] buf = new byte[256];

 // receive request
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 socket.receive(packet);

 // figure out response
 String dString = null ;
 if (in == null)
 dString = new Date().toString();
 else
 dString = getNextQuote();
 buf = dString.getBytes();

 // send the response to the client at "address" and "port"
 InetAddress address = packet.getAddress();
 int port = packet.getPort();
 packet = new DatagramPacket(buf, buf.length, address, port);
 socket.send(packet);
 } catch (IOException e) {
 e.printStackTrace();

moreQuotes = false;
 }
 }
 socket.close();
 }

 protected String getNextQuote() {
 String returnValue = null;
 try {
 if ((returnValue = in.readLine()) == null) {
 in.close();

moreQuotes = false;
 returnValue = "No more quotes. Goodbye.";
 }
 } catch (IOException e) {
 returnValue = "IOException occurred in server.";
 }
 return returnValue;
 }
}

