
2/23/10

1

Using Threads for Parallelism

CS 475

Introduction

 Goal: connecting multiple computers
to get higher performance
  Multiprocessors
  Scalability, availability, power efficiency

 Job-level (process-level) parallelism
  High throughput for independent jobs

 Parallel processing program
  Single program run on multiple processors

 Multicore microprocessors
  Chips with multiple processors (cores)

2

2/23/10

2

Hardware and Software

 Hardware
  Serial: e.g., Pentium 4
  Parallel: e.g., quad-core Xeon e5345

 Software
  Sequential: previous classes
  Concurrent: this class

 Sequential/concurrent software can run on
serial/parallel hardware
  Challenge: making effective use of parallel

hardware

3

Parallel Programming

 Parallel software is the problem
 Need to get significant performance

improvement
  Otherwise, just use a faster uniprocessor, since

it’s easier!
 Difficulties

  Partitioning
  Coordination
  Communications overhead

4

2/23/10

3

Amdahl’s Law

 Sequential part can limit speedup
 Example: 100 processors, 90× speedup?

  Tnew = Tparallelizable/100 + Tsequential

 

  Solving: Fparallelizable = 0.999
 Need sequential part to be 0.1% of original

time

5

Shared Memory
 SMP: shared memory multiprocessor

  Hardware provides single physical
address space for all processors

  Synchronize shared variables using locks
  Memory access time

•  UMA (uniform) vs. NUMA (nonuniform)

6

2/23/10

4

Message Passing
 Each processor has private physical address

space
 Hardware sends/receives messages between

processors

7

Loosely Coupled Clusters

 Network of independent computers
  Each has private memory and OS
  Connected using I/O system

•  E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks
  Web servers, databases, simulations, …

 High availability, scalable, affordable
 Problems

  Administration cost (prefer virtual machines)
  Low interconnect bandwidth

•  c.f. processor/memory bandwidth on an SMP
8

2/23/10

5

Grid Computing

 Separate computers interconnected by
long-haul networks
  E.g., Internet connections
  Work units farmed out, results sent back

 Can make use of idle time on PCs
  E.g., SETI@home, World Community Grid

9

Using threads for parallelism

 Shared memory multiprocessors,
multicores

 Two common approaches
  Partition “work” into t portions and then assign

each of t different threads to work on its own
region

  “Bag of tasks” approach
•  When partitioning work equally among threads in

advance is difficult

10

2/23/10

6

Example: Parallel Sum
void *sum(void *vargp);

long psum[MAXTHREADS];

long nelems_per_thread; /* Number of elements summed by each thread */

int main(int argc, char **argv) {
 long i, nelems, log_nelems, nthreads, result = 0;
 pthread_t tid[MAXTHREADS];
 int myid[MAXTHREADS];

 if (argc != 3) {
 printf("Usage: %s <nthreads> <log_nelems>\n", argv[0]);
 exit(0);
 }
 nthreads = atoi(argv[1]);
 log_nelems = atoi(argv[2]);
 nelems = (1L << log_nelems);

 if ((nelems % nthreads) != 0 || (log_nelems > 31)) {
 printf("Error: invalid nelems\n");
 exit(0);
 }

}

11

Parallel Sum cont’d

 nelems_per_thread = nelems / nthreads;

 for (i = 0; i < nthreads; i++) {
 myid[i] = i;
 Pthread_create(&tid[i], NULL, sum, &myid[i]);
 }
 for (i = 0; i < nthreads; i++)
 Pthread_join(tid[i], NULL);
 }

 for (i = 0; i < nthreads; i++)
 result += psum[i];

 if (result != (nelems * (nelems-1))/2)
 printf("Error: result=%ld\n", result);
 exit(0);
 }

12

2/23/10

7

Parallel Sum cont’d

void *sum(void *vargp) {

 int myid = *((int *)vargp); /* Extract the thread ID
*/

 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i, sum = 0;

 for (i = start; i < end; i++) {
 sum += i;
 }
 psum[myid] = sum;
 return NULL;

} 13

Bag of Tasks approach

  Coordinator thread maintains a work queue or data
structure from which worker threads remove tasks

  Easier to implement load balancing when amount of
computation associated with task is hard to estimate in
advance

while (true) {
 get a task from the bag;
 if (no more tasks)
 break; # exit the while loop
 execute the task, possibly generating new ones;

}

Outline of worker processes using the bag-of-tasks
paradigm.

14

