
1

1

PROCESS & THREAD
SYNCHRONIZATION 

CS 475

2

Background

 Concurrent access to shared data may result in
data inconsistency.

 Maintaining data consistency requires
mechanisms to ensure the orderly execution of
cooperating processes.

 Bounded Buffer problem (also called producer
consumer problem)

2

3

Bounded-Buffer

 Shared data 

#define BUFFER_SIZE 10
typedef struct {
. . .

} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

4

Bounded-Buffer

 Producer process

item nextProduced; 

while (1) {
 while (counter == BUFFER_SIZE)
 ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
}

3

5

Bounded-Buffer

 Consumer process

item nextConsumed; 

while (1) {
 while (counter == 0)
 ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;
}

6

Bounded Buffer

 The statements 

counter++; 
counter--; 

must be performed atomically.

 Atomic operation means an operation that
completes in its entirety without interruption. 

4

7

Bounded Buffer

  The statement “count++” may be implemented in
machine language as: 

register1 = counter
register1 = register1 + 1 
counter = register1 

  The statement “count--” may be implemented as: 

register2 = counter 
register2 = register2 – 1 
counter = register2

8

Bounded Buffer

 If both the producer and consumer attempt to
update the buffer concurrently, the assembly
language statements may get interleaved.

 Interleaving depends upon how the producer
and consumer processes are scheduled.

5

9

Bounded Buffer

 Assume counter is initially 5. One interleaving of
statements is: 

producer: register1 = counter (register1 = 5) 
producer: register1 = register1 + 1 (register1 = 6) 
consumer: register2 = counter (register2 = 5) 
consumer: register2 = register2 – 1 (register2 = 4) 
producer: counter = register1 (counter = 6) 
consumer: counter = register2 (counter = 4) 

  The value of count may be either 4 or 6, where the
correct result should be 5.

10

Race Condition

 Race condition: The situation where several
processes access – and manipulate shared
data concurrently. The final value of the shared
data depends upon which process finishes last.

 To prevent race conditions, concurrent
processes must be synchronized.

6

11

The Critical-Section Problem

 n processes all competing to use some
shared data

 Each process has a code segment,
called critical section, in which the
shared data is accessed.

 Problem – ensure that when one process
is executing in its critical section, no
other process is allowed to execute in its
critical section.

12

Mutual Exclusion: Conditions for
Solution

Four conditions to provide mutual exclusion
1.  No two processes simultaneously in critical region
2.  No assumptions made about speeds or numbers of CPUs
3.  No process running outside its critical region may block

another process
4.  No process must wait forever to enter its critical region

7

13

Solutions to the Problem

 General structure of process Pi
 do {
 entry section
 critical section
 exit section
 reminder section
 } while (1);

 Processes may share some common variables to
synchronize their actions.

14

Synchronization Hardware

 Test and modify the content of a word
atomically 

 boolean TestAndSet(boolean &target) {
 boolean rv = target;
 target = true;
 return rv;
 }

8

15

Mutual Exclusion with Test-and-Set

 Shared data:  
boolean lock = false; 

 Process Pi
 do {
 while (TestAndSet(lock)) ;
 critical section
 lock = false;
 remainder section
 }

16

Semaphores

 The solution we have looked at (TSL
instruction) involves busy waiting
o  Potential waste of CPU cycles

 Semaphores are synchronization mechanism
that does not require busy waiting.
o  Uses blocking synchronization

 can only be accessed via two indivisible
(atomic) operations: wait() and signal()

 Each semaphore has an integer value and a
queue associated with it

9

17

Semaphore Implementation

 Define a semaphore as a record
 typedef struct {
 int value; 

 struct process *L; 
} semaphore; 

 Assume two simple operations:
o  block suspends the process that invokes it.
o  wakeup(P) resumes the execution of a blocked

process P.

18

Implementation
 Semaphore operations defined as
 wait(S): 

 S.value--;
 if (S.value < 0) {
 add this process to S.L; 

 block;
 }  

 signal(S):  
 S.value++;

 if (S.value <= 0) {
 remove a process P from S.L; 

 wakeup(P);
 }

10

19

Critical Section of n Processes

 Shared data:
 semaphore mutex; // initially mutex = 1 

 Process Pi:  

do { 
 wait(mutex); 
 critical section

 signal(mutex); 
 remainder section 
} while (1);

20

Implementation contʼd

 Critical aspect of semaphore implementation is that the
wait() and signal() operations must be executed
atomically
o  need to guarantee that no two processes can execute wait() or

signal() at the same time
o  Wait() and signal() have to be executed as critical sections!!

 Uniprocessors – disable interrupts while executing
wait() and signal()

 Multiprocessors – disabling interrupts will not work
because there are multiple processors
o  Most current CPUs have hardware support available (TSL),

use for implementing critical section

11

21

Semaphore as a General Synchronization Tool

 Execute B in Pj only after A executed in Pi
 Use semaphore flag initialized to 0
 Code:
 Pi Pj

 code code
 A wait(flag)
 signal(flag) B

22

Deadlock and Starvation

 Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes.

  Let S and Q be two semaphores initialized to 1
 P0 P1
 wait(S); wait(Q);
 wait(Q); wait(S);

 signal(S); signal(Q);
 signal(Q) signal(S);

 Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended.

12

23

Classical Problems of Synchronization

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem

24

Bounded-Buffer Problem

 Shared data 

semaphore full, empty, mutex; 

Initially: 

full = 0, empty = n, mutex = 1

13

25

Bounded-Buffer Problem Producer Process

 do {
 …
 produce an item in nextp
 …
 wait(empty);
 wait(mutex);
 …
 add nextp to buffer
 …
 signal(mutex);
 signal(full);
 } while (1);

26

Bounded-Buffer Problem Consumer Process

 do {
 wait(full)
 wait(mutex);
 …
 remove an item from buffer to nextc
 …
 signal(mutex);
 signal(empty);
 …
 consume the item in nextc
 …
 } while (1);

14

27

Readers-Writers Problem

 Shared data 

semaphore mutex, wrt; 

Initially 

mutex = 1, wrt = 1, readcount = 0

28

Readers-Writers Problem Writer Process

 wait(wrt);
 …
 writing is performed
 …
 signal(wrt);

15

29

Readers-Writers Problem Reader Process

 wait(mutex);
 readcount++;
 if (readcount == 1)
 wait(wrt);
 signal(mutex);
 …
 reading is performed
 …
 wait(mutex);
 readcount--;
 if (readcount == 0)
 signal(wrt);
 signal(mutex):

30

Dining-Philosophers Problem

 Shared data
 semaphore chopstick[5];

Initially all values are 1

16

31

Dining-Philosophers Problem: A non-solution
Philosopher i:
 do {
 wait(chopstick[i])
 wait(chopstick[(i+1) % 5])
 …
 eat
 …
 signal(chopstick[i]);
 signal(chopstick[(i+1) % 5]);
 …
 think
 …
 } while (1);

32

High-level synchronization mechanisms

 Semaphores are a very powerful mechanism for
process synchronization, but they are a low-level
mechanism

 Several high-level mechanisms that are easier to use
have been proposed
o  Monitors
o  Critical Regions
o  Read/Write Locks

 We will study monitors (Java and Pthreads provide
synchronization mechanisms based on monitors)

 NOTE: high-level mechanisms easier to use but
equivalent to semaphores in power

17

33

Monitors
 High-level synchronization construct that allows

the safe sharing of an abstract data type among
concurrent processes. 

 monitor monitor-name
 {
 shared variable declarations
 procedure body P1 (…) {
 . . .
 }
 procedure body Pn (…) {
 . . .
 }
 {
 initialization code
 }
 }

34

Monitors

  To allow a process to wait within the monitor, a
condition variable must be declared, as
 condition x, y;

 Condition variable can only be used with the
operations wait and signal.
o  The operation
 x.wait(); 
means that the process invoking this operation is
suspended until another process invokes
 x.signal();

o  The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.

18

35

Schematic View of a Monitor

36

Monitor With Condition Variables

19

37

Producer-Consumer using monitors

38

Dining Philosophers Example
monitor dp
{
 enum {thinking, hungry, eating} state[5];
 condition self[5];
 void pickup(int i) // following slides
 void putdown(int i) // following slides
 void test(int i) // following slides

 void init() {
 for (int i = 0; i < 5; i++)
 state[i] = thinking;
 }
}

20

39

Dining Philosophers
void pickup(int i) {
 state[i] = hungry;
 test[i];
 if (state[i] != eating)
 self[i].wait();
}

void putdown(int i) {
 state[i] = thinking;
 // test left and right neighbors
 test((i+4) % 5);
 test((i+1) % 5);
}

40

Dining Philosophers
void test(int i) {
 if ((state[(i + 4) % 5] != eating) &&
 (state[i] == hungry) &&
 (state[(i + 1) % 5] != eating)) {
 state[i] = eating;
 self[i].signal();
 }
}

21

41

Synchronization Mechanisms

 Pthreads
o  Semaphores
o  Mutex locks
o  Condition Variables
o  Reader/Writer Locks

 Java
o  Each object has an (implicitly) associated lock and

condition variable

42

Java thread synchronization calls

thread.join(int millisecs)
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object.

22

43

Mutual exclusion in Java

class Interfere {
 private int data = 0;
 public synchronized void update() {
 data++;
 }
}

class Interfere {
 private int data = 0;
 public void update() {

 synchronized(this) {
 data++;

 }
 }
}

44

Producer consumer using Java

23

45

Producer consumer using Java contʼd

46

Pthreads Synchronization Mechanisms

 Mutex Locks
 Condition Variables
 Semaphores
 Read Write Locks

24

25

