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PROCESS & THREAD 
SYNCHRONIZATION 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Background


 Concurrent access to shared data may result in 
data inconsistency.


 Maintaining data consistency requires 
mechanisms to ensure the orderly execution of 
cooperating processes.


 Bounded Buffer problem (also called producer 
consumer problem)




2


3


Bounded-Buffer 


 Shared data 

#define BUFFER_SIZE 10

typedef struct {


. . .


} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;
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Bounded-Buffer 


 Producer process 



item nextProduced; 


while (1) {


 
while (counter == BUFFER_SIZE)


 
 
; /* do nothing */


 
buffer[in] = nextProduced;


 
in = (in + 1) % BUFFER_SIZE;


 
counter++;


}




3


5


Bounded-Buffer 


 Consumer process 



item nextConsumed; 


while (1) {


 
while (counter == 0)


 
 
; /* do nothing */


 
nextConsumed = buffer[out];


 
out = (out + 1) % BUFFER_SIZE;


 
counter--;


}
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Bounded Buffer


 The statements 

counter++; 
counter--; 

must be performed atomically.


 Atomic operation means an operation that 
completes in its entirety without interruption. 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Bounded Buffer


  The statement “count++” may be implemented in 
machine language as: 

register1 = counter


register1 = register1 + 1 
counter = register1 

  The statement “count--” may be implemented as: 

register2 = counter 
register2 = register2 – 1 
counter = register2
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Bounded Buffer


 If both the producer and consumer attempt to 
update the buffer concurrently, the assembly 
language statements may get interleaved.


 Interleaving depends upon how the producer 
and consumer processes are scheduled.
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Bounded Buffer


 Assume counter is initially 5. One interleaving of 
statements is: 

producer: register1 = counter (register1 = 5) 
producer: register1 = register1 + 1 (register1 = 6) 
consumer: register2 = counter (register2 = 5) 
consumer: register2 = register2 – 1 (register2 = 4) 
producer: counter = register1 (counter = 6) 
consumer: counter = register2 (counter = 4) 

  The value of count may be either 4 or 6, where the 
correct result should be 5.
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Race Condition


 Race condition: The situation where several 
processes access – and manipulate shared 
data concurrently. The final value of the shared 
data depends upon which process finishes last.


 To prevent race conditions, concurrent 
processes must be synchronized.
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The Critical-Section Problem


 n processes all competing to use some 
shared data


 Each process has a code segment, 
called critical section, in which the 
shared data is accessed.


 Problem – ensure that when one process 
is executing in its critical section, no 
other process is allowed to execute in its 
critical section.
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Mutual Exclusion: Conditions for 
Solution


Four conditions to provide mutual exclusion

1.  No two processes simultaneously in critical region

2.  No assumptions made about speeds or numbers of CPUs

3.  No process running outside its critical region may block 

another process

4.  No process must wait forever to enter its critical region
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Solutions to the Problem


 General structure of process Pi


 
do {


 
 
entry section


 
 
 
critical section


 
 
exit section


 
 
 
reminder section


 
} while (1);


 Processes may share some common variables to 
synchronize their actions.
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Synchronization Hardware


 Test and modify the content of a word 
atomically 


 
boolean TestAndSet(boolean &target) {


 
 
boolean rv = target;


 
 
target = true;


 
 
return rv;


 
}
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Mutual Exclusion with Test-and-Set


 Shared data:  

boolean lock = false; 

 Process Pi


 
do {


 
 
while (TestAndSet(lock)) ;


 
 
 
critical section


 
 
lock = false;


 
 
 
remainder section


 
}
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Semaphores


 The solution we have looked at (TSL 
instruction) involves busy waiting

o  Potential waste of CPU cycles


 Semaphores are synchronization mechanism 
that does not require busy waiting.

o  Uses blocking synchronization


 can only be accessed via two indivisible 
(atomic) operations: wait() and signal()


 Each semaphore has an integer value and a 
queue associated with it
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Semaphore Implementation


 Define a semaphore as a record


 
typedef struct {


 
   int value; 


   struct process *L; 

} semaphore; 

 Assume two simple operations:

o  block suspends the process that invokes it.

o  wakeup(P) resumes the execution of a blocked 

process P.
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Implementation

 Semaphore operations defined as 


 
wait(S):
 


 
S.value--;


 
 
if (S.value < 0) { 


 
 
 
 
 
add this process to S.L; 


 
 
 
 
block;


 
 
}  


 
signal(S):  

 
S.value++;



 
 
if (S.value <= 0) {


 
 
 
 
 
remove a process P from S.L; 


 
 
 
 
wakeup(P);


 
 
}
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Critical Section of n Processes


 Shared data:


   semaphore mutex;      // initially mutex = 1 

 Process Pi:  

do { 
    wait(mutex); 
        critical section


 
    signal(mutex); 
        remainder section 
} while (1);


20


Implementation 
 
contʼd


 Critical aspect of semaphore implementation is that the 
wait() and signal() operations must be executed 
atomically

o   need to guarantee that no two processes can execute wait() or 

signal() at the same time

o  Wait() and signal() have to be executed as critical sections!!


 Uniprocessors – disable interrupts while executing 
wait() and signal()


 Multiprocessors – disabling interrupts will not work 
because there are multiple processors

o  Most current CPUs have hardware support available (TSL), 

use for implementing critical section
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Semaphore as a General Synchronization Tool


 Execute B in Pj only after A executed in Pi

 Use semaphore flag initialized to 0

 Code:


 
Pi 
Pj


 
 


 
code 
 code


 
A 
wait(flag)


 
signal(flag) 
B
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Deadlock and Starvation


 Deadlock – two or more processes are waiting 
indefinitely for an event that can be caused by only one 
of the waiting processes.


  Let S and Q be two semaphores initialized to 1


 
P0 
P1


 
wait(S); 
wait(Q);


 
wait(Q); 
wait(S);


 
  
 


 
signal(S); 
signal(Q);


 
signal(Q) 
signal(S);


 Starvation  – indefinite blocking.  A process may never 
be removed from the semaphore queue in which it is 
suspended.
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Classical Problems of Synchronization


 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem
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Bounded-Buffer Problem


 Shared data 

semaphore full, empty, mutex; 

Initially: 

full = 0, empty = n, mutex = 1




13


25


Bounded-Buffer Problem Producer Process



 
do { 


 
 
 
…


 
 
produce an item in nextp


 
 
 
 …


 
 
wait(empty);


 
 
wait(mutex);


 
 
 
 …


 
 
add nextp to buffer


 
 
 
 …


 
 
signal(mutex);


 
 
signal(full);


 
} while (1);
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Bounded-Buffer Problem Consumer Process



 
do { 


 
 
wait(full)


 
 
wait(mutex);


 
 
 
 …


 
 
remove an item from buffer to nextc


 
 
 
 …


 
 
signal(mutex);


 
 
signal(empty);


 
 
 
 …


 
 
consume the item in nextc


 
 
 
 …


 
} while (1);
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Readers-Writers Problem


 Shared data 

semaphore mutex, wrt; 

Initially 

mutex = 1, wrt = 1, readcount = 0
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Readers-Writers Problem Writer Process



 
wait(wrt);


 
 
 
 …


 
 
writing is performed


 
 
 
 …


 
signal(wrt);
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Readers-Writers Problem Reader Process



 
wait(mutex);


 
readcount++; 



 
if (readcount == 1)


 
 
 
wait(wrt);


 
signal(mutex);


 
 
 
 …


 
 
reading is performed


 
 
 
 …


 
wait(mutex);


 
readcount--;


 
if (readcount == 0)


 
 
signal(wrt);


 
signal(mutex):
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Dining-Philosophers Problem


 Shared data 


 
semaphore chopstick[5];


Initially all values are 1
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Dining-Philosophers Problem: A non-solution

Philosopher i:


 
do {


 
 
wait(chopstick[i])


 
 
wait(chopstick[(i+1) % 5])


 
 
 
 …


 
 
 
eat


 
 
 
 …


 
 
signal(chopstick[i]);


 
 
signal(chopstick[(i+1) % 5]);


 
 
 
 …


 
 
 
think


 
 
 
 …


 
 
} while (1);


32


High-level synchronization mechanisms


 Semaphores are a very powerful mechanism for 
process synchronization, but they are a low-level 
mechanism


 Several high-level mechanisms that are easier to use 
have been proposed

o  Monitors 

o  Critical Regions

o  Read/Write Locks


 We will study monitors (Java and Pthreads provide 
synchronization mechanisms based on monitors)


 NOTE: high-level mechanisms easier to use but 
equivalent to semaphores in power
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Monitors

 High-level synchronization construct that allows 

the safe sharing of an abstract data type among 
concurrent processes. 


 
 
monitor monitor-name


 
 
{


 
 
 
shared variable declarations


 
 
 
procedure body P1 (…) {


 
 
 
 
. . .


 
 
 
}


 
 
 
procedure body Pn (…) {


 
 
 
 
 . . .


 
 
 
} 
 
 



 
 
 
{


 
 
 
 
initialization code


 
 
 
}


 
 
}
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Monitors


  To allow a process to wait within the monitor, a 
condition variable must be declared, as


 
condition x, y;


 Condition variable can only be used with the 
operations wait and signal.

o  The operation


 
x.wait(); 
means that the process invoking this operation is 
suspended until another process invokes


 
x.signal();


o  The x.signal operation resumes exactly one suspended 
process.  If no process is suspended, then the signal 
operation has no effect. 
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Schematic View of a Monitor
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Monitor With Condition Variables
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Producer-Consumer using monitors
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Dining Philosophers Example


monitor dp 


{


 
enum {thinking, hungry, eating} state[5];


 
condition self[5];


 
void pickup(int i) 
 
// following slides


 
void putdown(int i) 
 
// following slides


 
void test(int i) 
 
 
// following slides


 



  void init() {


 
 
for (int i = 0; i < 5; i++)


 
 
 
state[i] = thinking;


 
}


}
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Dining Philosophers


void pickup(int i) {


 
state[i] = hungry;


 
test[i];


 
if (state[i] != eating)


 
 
self[i].wait();


}



void putdown(int i) {


 
state[i] = thinking;


 
// test left and right neighbors


 
test((i+4) % 5);


 
test((i+1) % 5);


}
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Dining Philosophers


void test(int i) {


 
if ( (state[(i + 4) % 5] != eating) &&


 
  (state[i] == hungry) &&


 
  (state[(i + 1) % 5] != eating)) {


 
 
state[i] = eating;


 
 
self[i].signal();


 
}


}
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Synchronization Mechanisms


 Pthreads

o  Semaphores

o  Mutex locks

o  Condition Variables

o  Reader/Writer Locks


 Java

o  Each object has an (implicitly) associated lock and 

condition variable
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Java thread synchronization calls


thread.join(int millisecs)


Blocks the calling thread for up to the specified time until thread has terminated.


thread.interrupt()


Interrupts thread: causes it to return from a blocking method call such as sleep().


object.wait(long millisecs, int nanosecs)


Blocks the calling thread until a call made to notify() or notifyAll() on object wakes 
the thread, or the thread is interrupted, or the specified time has elapsed.


object.notify(), object.notifyAll()


Wakes, respectively, one or all of any threads that have called wait() on object. 
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Mutual exclusion in Java


class Interfere { 
   private int data = 0; 
   public synchronized void update() { 
      data++; 
  } 
} 

class Interfere { 
   private int data = 0; 
   public void update() { 

 synchronized(this) {       
     data++; 

   } 
   } 
} 
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Producer consumer using Java
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Producer consumer using Java   contʼd
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Pthreads Synchronization Mechanisms


 Mutex Locks

 Condition Variables

 Semaphores

 Read Write Locks
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