
1

1

PROCESS & THREAD
SYNCHRONIZATION 

CS 475

2

Background

 Concurrent access to shared data may result in
data inconsistency.

 Maintaining data consistency requires
mechanisms to ensure the orderly execution of
cooperating processes.

 Bounded Buffer problem (also called producer
consumer problem)

2

3

Bounded-Buffer

 Shared data 

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

4

Bounded-Buffer

 Producer process

item nextProduced; 

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

3

5

Bounded-Buffer

 Consumer process

item nextConsumed; 

while (1) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

}

6

Bounded Buffer

 The statements 

counter++; 
counter--; 

must be performed atomically.

 Atomic operation means an operation that
completes in its entirety without interruption. 

4

7

Bounded Buffer

  The statement “count++” may be implemented in
machine language as: 

register1 = counter

register1 = register1 + 1 
counter = register1 

  The statement “count--” may be implemented as: 

register2 = counter 
register2 = register2 – 1 
counter = register2

8

Bounded Buffer

 If both the producer and consumer attempt to
update the buffer concurrently, the assembly
language statements may get interleaved.

 Interleaving depends upon how the producer
and consumer processes are scheduled.

5

9

Bounded Buffer

 Assume counter is initially 5. One interleaving of
statements is: 

producer: register1 = counter (register1 = 5) 
producer: register1 = register1 + 1 (register1 = 6) 
consumer: register2 = counter (register2 = 5) 
consumer: register2 = register2 – 1 (register2 = 4) 
producer: counter = register1 (counter = 6) 
consumer: counter = register2 (counter = 4) 

  The value of count may be either 4 or 6, where the
correct result should be 5.

10

Race Condition

 Race condition: The situation where several
processes access – and manipulate shared
data concurrently. The final value of the shared
data depends upon which process finishes last.

 To prevent race conditions, concurrent
processes must be synchronized.

6

11

The Critical-Section Problem

 n processes all competing to use some
shared data

 Each process has a code segment,
called critical section, in which the
shared data is accessed.

 Problem – ensure that when one process
is executing in its critical section, no
other process is allowed to execute in its
critical section.

12

Mutual Exclusion: Conditions for
Solution

Four conditions to provide mutual exclusion

1.  No two processes simultaneously in critical region

2.  No assumptions made about speeds or numbers of CPUs

3.  No process running outside its critical region may block

another process

4.  No process must wait forever to enter its critical region

7

13

Solutions to the Problem

 General structure of process Pi

do {

entry section

critical section

exit section

reminder section

} while (1);

 Processes may share some common variables to
synchronize their actions.

14

Synchronization Hardware

 Test and modify the content of a word
atomically 

boolean TestAndSet(boolean &target) {

boolean rv = target;

target = true;

return rv;

}

8

15

Mutual Exclusion with Test-and-Set

 Shared data:  

boolean lock = false; 

 Process Pi

do {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

16

Semaphores

 The solution we have looked at (TSL
instruction) involves busy waiting

o  Potential waste of CPU cycles

 Semaphores are synchronization mechanism
that does not require busy waiting.

o  Uses blocking synchronization

 can only be accessed via two indivisible
(atomic) operations: wait() and signal()

 Each semaphore has an integer value and a
queue associated with it

9

17

Semaphore Implementation

 Define a semaphore as a record

typedef struct {

 int value; 

 struct process *L; 

} semaphore; 

 Assume two simple operations:

o  block suspends the process that invokes it.

o  wakeup(P) resumes the execution of a blocked

process P.

18

Implementation

 Semaphore operations defined as

wait(S):
 

S.value--;

if (S.value < 0) {

add this process to S.L; 

block;

}  

signal(S):  

S.value++;

if (S.value <= 0) {

remove a process P from S.L; 

wakeup(P);

}

10

19

Critical Section of n Processes

 Shared data:

 semaphore mutex; // initially mutex = 1 

 Process Pi:  

do { 
 wait(mutex); 
 critical section

 signal(mutex); 
 remainder section 
} while (1);

20

Implementation

contʼd

 Critical aspect of semaphore implementation is that the
wait() and signal() operations must be executed
atomically

o  need to guarantee that no two processes can execute wait() or

signal() at the same time

o  Wait() and signal() have to be executed as critical sections!!

 Uniprocessors – disable interrupts while executing
wait() and signal()

 Multiprocessors – disabling interrupts will not work
because there are multiple processors

o  Most current CPUs have hardware support available (TSL),

use for implementing critical section

11

21

Semaphore as a General Synchronization Tool

 Execute B in Pj only after A executed in Pi

 Use semaphore flag initialized to 0

 Code:

Pi
Pj

code
 code

A
wait(flag)

signal(flag)
B

22

Deadlock and Starvation

 Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes.

  Let S and Q be two semaphores initialized to 1

P0
P1

wait(S);
wait(Q);

wait(Q);
wait(S);

 
 

signal(S);
signal(Q);

signal(Q)
signal(S);

 Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended.

12

23

Classical Problems of Synchronization

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem

24

Bounded-Buffer Problem

 Shared data 

semaphore full, empty, mutex; 

Initially: 

full = 0, empty = n, mutex = 1

13

25

Bounded-Buffer Problem Producer Process

do {

…

produce an item in nextp

 …

wait(empty);

wait(mutex);

 …

add nextp to buffer

 …

signal(mutex);

signal(full);

} while (1);

26

Bounded-Buffer Problem Consumer Process

do {

wait(full)

wait(mutex);

 …

remove an item from buffer to nextc

 …

signal(mutex);

signal(empty);

 …

consume the item in nextc

 …

} while (1);

14

27

Readers-Writers Problem

 Shared data 

semaphore mutex, wrt; 

Initially 

mutex = 1, wrt = 1, readcount = 0

28

Readers-Writers Problem Writer Process

wait(wrt);

 …

writing is performed

 …

signal(wrt);

15

29

Readers-Writers Problem Reader Process

wait(mutex);

readcount++;

if (readcount == 1)

wait(wrt);

signal(mutex);

 …

reading is performed

 …

wait(mutex);

readcount--;

if (readcount == 0)

signal(wrt);

signal(mutex):

30

Dining-Philosophers Problem

 Shared data

semaphore chopstick[5];

Initially all values are 1

16

31

Dining-Philosophers Problem: A non-solution

Philosopher i:

do {

wait(chopstick[i])

wait(chopstick[(i+1) % 5])

 …

eat

 …

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

 …

think

 …

} while (1);

32

High-level synchronization mechanisms

 Semaphores are a very powerful mechanism for
process synchronization, but they are a low-level
mechanism

 Several high-level mechanisms that are easier to use
have been proposed

o  Monitors

o  Critical Regions

o  Read/Write Locks

 We will study monitors (Java and Pthreads provide
synchronization mechanisms based on monitors)

 NOTE: high-level mechanisms easier to use but
equivalent to semaphores in power

17

33

Monitors

 High-level synchronization construct that allows

the safe sharing of an abstract data type among
concurrent processes. 

monitor monitor-name

{

shared variable declarations

procedure body P1 (…) {

. . .

}

procedure body Pn (…) {

 . . .

}

{

initialization code

}

}

34

Monitors

  To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;

 Condition variable can only be used with the
operations wait and signal.

o  The operation

x.wait(); 
means that the process invoking this operation is
suspended until another process invokes

x.signal();

o  The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.

18

35

Schematic View of a Monitor

36

Monitor With Condition Variables

19

37

Producer-Consumer using monitors

38

Dining Philosophers Example

monitor dp

{

enum {thinking, hungry, eating} state[5];

condition self[5];

void pickup(int i)

// following slides

void putdown(int i)

// following slides

void test(int i)

// following slides

 void init() {

for (int i = 0; i < 5; i++)

state[i] = thinking;

}

}

20

39

Dining Philosophers

void pickup(int i) {

state[i] = hungry;

test[i];

if (state[i] != eating)

self[i].wait();

}

void putdown(int i) {

state[i] = thinking;

// test left and right neighbors

test((i+4) % 5);

test((i+1) % 5);

}

40

Dining Philosophers

void test(int i) {

if ((state[(i + 4) % 5] != eating) &&

 (state[i] == hungry) &&

 (state[(i + 1) % 5] != eating)) {

state[i] = eating;

self[i].signal();

}

}

21

41

Synchronization Mechanisms

 Pthreads

o  Semaphores

o  Mutex locks

o  Condition Variables

o  Reader/Writer Locks

 Java

o  Each object has an (implicitly) associated lock and

condition variable

42

Java thread synchronization calls

thread.join(int millisecs)

Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()

Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)

Blocks the calling thread until a call made to notify() or notifyAll() on object wakes
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()

Wakes, respectively, one or all of any threads that have called wait() on object.

22

43

Mutual exclusion in Java

class Interfere {
 private int data = 0;
 public synchronized void update() {
 data++;
 }
}

class Interfere {
 private int data = 0;
 public void update() {

 synchronized(this) {
 data++;

 }
 }
}

44

Producer consumer using Java

23

45

Producer consumer using Java contʼd

46

Pthreads Synchronization Mechanisms

 Mutex Locks

 Condition Variables

 Semaphores

 Read Write Locks

24

25

