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PROCESS & THREAD 
SYNCHRONIZATION 

CS 475
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Background

 Concurrent access to shared data may result in 
data inconsistency.

 Maintaining data consistency requires 
mechanisms to ensure the orderly execution of 
cooperating processes.

 Bounded Buffer problem (also called producer 
consumer problem)
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Bounded-Buffer 

 Shared data 

#define BUFFER_SIZE 10
typedef struct {
. . .

} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;
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Bounded-Buffer 

 Producer process 

item nextProduced; 

while (1) {
 while (counter == BUFFER_SIZE)
  ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
}
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Bounded-Buffer 

 Consumer process 

item nextConsumed; 

while (1) {
 while (counter == 0)
  ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;
}
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Bounded Buffer

 The statements 

counter++; 
counter--; 

must be performed atomically.

 Atomic operation means an operation that 
completes in its entirety without interruption. 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Bounded Buffer

  The statement “count++” may be implemented in 
machine language as: 

register1 = counter
register1 = register1 + 1 
counter = register1 

  The statement “count--” may be implemented as: 

register2 = counter 
register2 = register2 – 1 
counter = register2

8

Bounded Buffer

 If both the producer and consumer attempt to 
update the buffer concurrently, the assembly 
language statements may get interleaved.

 Interleaving depends upon how the producer 
and consumer processes are scheduled.
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Bounded Buffer

 Assume counter is initially 5. One interleaving of 
statements is: 

producer: register1 = counter (register1 = 5) 
producer: register1 = register1 + 1 (register1 = 6) 
consumer: register2 = counter (register2 = 5) 
consumer: register2 = register2 – 1 (register2 = 4) 
producer: counter = register1 (counter = 6) 
consumer: counter = register2 (counter = 4) 

  The value of count may be either 4 or 6, where the 
correct result should be 5.
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Race Condition

 Race condition: The situation where several 
processes access – and manipulate shared 
data concurrently. The final value of the shared 
data depends upon which process finishes last.

 To prevent race conditions, concurrent 
processes must be synchronized.
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The Critical-Section Problem

 n processes all competing to use some 
shared data

 Each process has a code segment, 
called critical section, in which the 
shared data is accessed.

 Problem – ensure that when one process 
is executing in its critical section, no 
other process is allowed to execute in its 
critical section.

12

Mutual Exclusion: Conditions for 
Solution

Four conditions to provide mutual exclusion
1.  No two processes simultaneously in critical region
2.  No assumptions made about speeds or numbers of CPUs
3.  No process running outside its critical region may block 

another process
4.  No process must wait forever to enter its critical region
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Solutions to the Problem

 General structure of process Pi
 do {
  entry section
   critical section
  exit section
   reminder section
 } while (1);

 Processes may share some common variables to 
synchronize their actions.
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Synchronization Hardware

 Test and modify the content of a word 
atomically 

 boolean TestAndSet(boolean &target) {
  boolean rv = target;
  target = true;
  return rv;
 }
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Mutual Exclusion with Test-and-Set

 Shared data:  
boolean lock = false; 

 Process Pi
 do {
  while (TestAndSet(lock)) ;
   critical section
  lock = false;
   remainder section
 }
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Semaphores

 The solution we have looked at (TSL 
instruction) involves busy waiting
o  Potential waste of CPU cycles

 Semaphores are synchronization mechanism 
that does not require busy waiting.
o  Uses blocking synchronization

 can only be accessed via two indivisible 
(atomic) operations: wait() and signal()

 Each semaphore has an integer value and a 
queue associated with it
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Semaphore Implementation

 Define a semaphore as a record
 typedef struct {
    int value; 

   struct process *L; 
} semaphore; 

 Assume two simple operations:
o  block suspends the process that invokes it.
o  wakeup(P) resumes the execution of a blocked 

process P.
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Implementation
 Semaphore operations defined as 
 wait(S): 

 S.value--;
  if (S.value < 0) { 
     add this process to S.L; 

    block;
  }  

 signal(S):  
 S.value++;

  if (S.value <= 0) {
     remove a process P from S.L; 

    wakeup(P);
  }
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Critical Section of n Processes

 Shared data:
   semaphore mutex;      // initially mutex = 1 

 Process Pi:  

do { 
    wait(mutex); 
        critical section

     signal(mutex); 
        remainder section 
} while (1);

20

Implementation  contʼd

 Critical aspect of semaphore implementation is that the 
wait() and signal() operations must be executed 
atomically
o   need to guarantee that no two processes can execute wait() or 

signal() at the same time
o  Wait() and signal() have to be executed as critical sections!!

 Uniprocessors – disable interrupts while executing 
wait() and signal()

 Multiprocessors – disabling interrupts will not work 
because there are multiple processors
o  Most current CPUs have hardware support available (TSL), 

use for implementing critical section
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Semaphore as a General Synchronization Tool

 Execute B in Pj only after A executed in Pi
 Use semaphore flag initialized to 0
 Code:
 Pi Pj
  
 code  code
 A wait(flag)
 signal(flag) B

22

Deadlock and Starvation

 Deadlock – two or more processes are waiting 
indefinitely for an event that can be caused by only one 
of the waiting processes.

  Let S and Q be two semaphores initialized to 1
 P0 P1
 wait(S); wait(Q);
 wait(Q); wait(S);
    
 signal(S); signal(Q);
 signal(Q) signal(S);

 Starvation  – indefinite blocking.  A process may never 
be removed from the semaphore queue in which it is 
suspended.
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Classical Problems of Synchronization

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem

24

Bounded-Buffer Problem

 Shared data 

semaphore full, empty, mutex; 

Initially: 

full = 0, empty = n, mutex = 1
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Bounded-Buffer Problem Producer Process

 do { 
   …
  produce an item in nextp
    …
  wait(empty);
  wait(mutex);
    …
  add nextp to buffer
    …
  signal(mutex);
  signal(full);
 } while (1);
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Bounded-Buffer Problem Consumer Process

 do { 
  wait(full)
  wait(mutex);
    …
  remove an item from buffer to nextc
    …
  signal(mutex);
  signal(empty);
    …
  consume the item in nextc
    …
 } while (1);
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Readers-Writers Problem

 Shared data 

semaphore mutex, wrt; 

Initially 

mutex = 1, wrt = 1, readcount = 0
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Readers-Writers Problem Writer Process

 wait(wrt);
    …
  writing is performed
    …
 signal(wrt);
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Readers-Writers Problem Reader Process

 wait(mutex);
 readcount++; 
 if (readcount == 1)
   wait(wrt);
 signal(mutex);
    …
  reading is performed
    …
 wait(mutex);
 readcount--;
 if (readcount == 0)
  signal(wrt);
 signal(mutex):

30

Dining-Philosophers Problem

 Shared data 
 semaphore chopstick[5];

Initially all values are 1
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Dining-Philosophers Problem: A non-solution
Philosopher i:
 do {
  wait(chopstick[i])
  wait(chopstick[(i+1) % 5])
    …
   eat
    …
  signal(chopstick[i]);
  signal(chopstick[(i+1) % 5]);
    …
   think
    …
  } while (1);
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High-level synchronization mechanisms

 Semaphores are a very powerful mechanism for 
process synchronization, but they are a low-level 
mechanism

 Several high-level mechanisms that are easier to use 
have been proposed
o  Monitors 
o  Critical Regions
o  Read/Write Locks

 We will study monitors (Java and Pthreads provide 
synchronization mechanisms based on monitors)

 NOTE: high-level mechanisms easier to use but 
equivalent to semaphores in power
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Monitors
 High-level synchronization construct that allows 

the safe sharing of an abstract data type among 
concurrent processes. 

  monitor monitor-name
  {
   shared variable declarations
   procedure body P1 (…) {
    . . .
   }
   procedure body Pn (…) {
     . . .
   }   
   {
    initialization code
   }
  }
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Monitors

  To allow a process to wait within the monitor, a 
condition variable must be declared, as
 condition x, y;

 Condition variable can only be used with the 
operations wait and signal.
o  The operation
 x.wait(); 
means that the process invoking this operation is 
suspended until another process invokes
 x.signal();

o  The x.signal operation resumes exactly one suspended 
process.  If no process is suspended, then the signal 
operation has no effect. 
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Schematic View of a Monitor

36

Monitor With Condition Variables
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Producer-Consumer using monitors

38

Dining Philosophers Example
monitor dp 
{
 enum {thinking, hungry, eating} state[5];
 condition self[5];
 void pickup(int i)  // following slides
 void putdown(int i)  // following slides
 void test(int i)   // following slides
 
  void init() {
  for (int i = 0; i < 5; i++)
   state[i] = thinking;
 }
}
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Dining Philosophers
void pickup(int i) {
 state[i] = hungry;
 test[i];
 if (state[i] != eating)
  self[i].wait();
}

void putdown(int i) {
 state[i] = thinking;
 // test left and right neighbors
 test((i+4) % 5);
 test((i+1) % 5);
}
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Dining Philosophers
void test(int i) {
 if ( (state[(i + 4) % 5] != eating) &&
   (state[i] == hungry) &&
   (state[(i + 1) % 5] != eating)) {
  state[i] = eating;
  self[i].signal();
 }
}
 



21

41

Synchronization Mechanisms

 Pthreads
o  Semaphores
o  Mutex locks
o  Condition Variables
o  Reader/Writer Locks

 Java
o  Each object has an (implicitly) associated lock and 

condition variable
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Java thread synchronization calls

thread.join(int millisecs)
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes 
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object. 
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Mutual exclusion in Java

class Interfere { 
   private int data = 0; 
   public synchronized void update() { 
      data++; 
  } 
} 

class Interfere { 
   private int data = 0; 
   public void update() { 

 synchronized(this) {       
     data++; 

   } 
   } 
} 

44

Producer consumer using Java



23

45

Producer consumer using Java   contʼd
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Pthreads Synchronization Mechanisms

 Mutex Locks
 Condition Variables
 Semaphores
 Read Write Locks



24



25


