
Page 1!

Creating and Using Threads!

– 2 –! CS 475!

Traditional View of a Process!

shared libraries!

run-time heap!

0!

read/write data!

Program context:!
 Data registers!
 Condition codes!
 Stack pointer (SP)!
 Program counter (PC)!
Kernel context:!
 VM structures!
 Descriptor table!
 brk pointer!

Code, data, and stack!

read-only code/data!

stack!
SP!

PC!

brk!

Process context!

Page 2!

– 3 –! CS 475!

Alternate View of a Process!

shared libraries!

run-time heap!

0!

read/write data!Thread context:!
 Data registers!
 Condition codes!
 Stack pointer (SP)!
 Program counter (PC)!

 Code and Data!

read-only code/data!

stack!SP!

PC!

brk!

Thread (main thread)!

Kernel context:!
 VM structures!
 Descriptor table!
 brk pointer!

– 4 –! CS 475!

A Process With Multiple Threads!

shared libraries!

run-time heap!

0!

read/write data!Thread 1 context:!
 Data registers!
 Condition codes!
 SP1!
 PC1!

 Shared code and data!

read-only code/data!

stack 1!

Thread 1 (main thread)!

Kernel context:!
 VM structures!
 Descriptor table!
 brk pointer!

Thread 2 context:!
 Data registers!
 Condition codes!
 SP2!
 PC2!

stack 2!

Thread 2 (peer thread)!

Page 3!

– 5 –! CS 475!

Logical View of Threads!

P0!

P1!

sh! sh! sh!

foo!

bar!

T1!

Process hierarchy!Threads associated with process foo!

T2!
T4!

T5! T3!

shared code, data!
and kernel context!

– 6 –! CS 475!

Concurrent Thread Execution!

Time!

Thread A! Thread B! Thread C!

Page 4!

– 7 –! CS 475!

Threads vs. Processes!

– 8 –! CS 475!

Creating and Using threads !

Page 5!

– 9 –! CS 475!

Java Threads!

– 10 –! CS 475!

Java thread constructor and management
methods!

 Thread(ThreadGroup group, Runnable target, String name) 	

	
Creates a new thread in the SUSPENDED state, which will belong to group
and be identified as name; the thread will execute the run() method of target.	

setPriority(int newPriority), getPriority()	

	
Set and return the thread’s priority.	

run()	

	
A thread executes the run() method of its target object, if it has one, and
otherwise its own run() method (Thread implements Runnable).	

start()	

	
Change the state of the thread from SUSPENDED to RUNNABLE. 	

sleep(int millisecs)	

	
Cause the thread to enter the SUSPENDED state for the specified time.	

yield()	

Enter the READY state and invoke the scheduler.	

destroy()	

	
Destroy the thread.	

Page 6!

– 11 –! CS 475!

Creating threads!

class Simple implements Runnable {
 public void run() {
 System.out.println(“this is a thread”);
 }
}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative strategy: Extend Thread class (not recommended!
unless you are creating a new type of Thread) !

– 12 –! CS 475!

Pthreads!

Page 7!

– 13 –! CS 475!

Posix Threads (Pthreads) Interface!

– 14 –! CS 475!

The Pthreads "hello, world" Program!
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes !
(usually NULL)!

Thread arguments!
(void *p) !

return value!
(void **p)!

Page 8!

– 15 –! CS 475!

Execution of Threaded“hello, world”!
main thread!

peer thread!

return NULL;!main thread waits for !
peer thread to terminate!

exit() !
terminates !

main thread and !
any peer threads!

call Pthread_create()!

call Pthread_join()!

Pthread_join() returns!

printf()!

(peer thread!
terminates)!

Pthread_create() returns!

– 16 –! CS 475!

Page 9!

– 17 –! CS 475!

– 18 –! CS 475!

Page 10!

– 19 –! CS 475!

– 20 –! CS 475!

Page 11!

– 21 –! CS 475!

– 22 –! CS 475!

Issues With Thread-Based Servers!

Page 12!

– 23 –! CS 475!

Pros and Cons of Thread-Based
Designs!

