Creating and Using Threads

CS 475

Traditional View of a Process

Process = process context + code, data, and stack

Process context Code, data, and stack
stack
Program context: SP
Data registers
Condition codes shared libraries
Stack pointer (SP) brk
Program counter (PC) run-time heap
Kernel context: read/write data
VM structures PC —| read-only code/data
Descriptor table
brk pointer 0
-2- CS 475

Page 1

Alternate View of a Process

Process = thread + code, data, and kernel context

Thread (main thread) Code and Data

shared libraries

brk "
run-time heap

read/write data
PC —| read-only code/data

1

1

1

1

1

X Thread context:
1 Data registers
1

1

1

1

1

1

1

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
____________________ \ VM structures
Descriptor table
brk pointer

-3~ CS 475

A Process With Multiple Threads

Multiple threads can be associated with a process

m Each thread has its own logical control flow (sequence of PC
values)

= Each thread shares the same code, data, and kernel context
m Each thread has its own thread id (TID)
Thread 1 (main thread) Shared code and data Thread 2 (peer thread)

shared libraries

‘ stack 1 ‘ ‘ stack 2 ‘
run-time heap

Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes Condition codes
SP1 0 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table

brk pointer
—4- CS 475

Page 2

Logical View of Threads

Threads associated with a process form a pool of
peers.

m Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

0 7 ® 7

ofolo
® @ @

-5- @ CS 475

1

1

1

1

1

1 ..

1 "s| shared code, data
: and kernel context
1

1

1

1

1

1

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their
logical flows overlap in time.

Otherwise, they are sequential.

Examples: Thread A Thread B Thread C
m Concurrent: A& B,A&C | | I _______________________________________
m Sequential: B & C I
Time | I ------
-6- CS 475

Page 3

Threads vs. Processes

How threads and processes are similar
m Each has its own logical control flow.
m Each can run concurrently.
m Each is context switched.

How threads and processes are different
= Threads share code and data, processes (typically) do not.

m Threads are somewhat less expensive than processes.

® Process control (creating and reaping) is twice as expensive as
thread control.

@ Linux/Pentium Ill numbers:
» ~20K cycles to create and reap a process.
» ~10K cycles to create and reap a thread.

-7~ CS 475

Creating and Using threads

Pthreads Multi-threading Library
= Supported on Linux, MacOS X, Windows
m pthread_create, pthread_join, pthread_self,
pthread_exit, pthread_detach
Java

m provides a Runnable interface and a Thread class

as part of standard Java libraries
® users program threads by implementing the Runnable
interface or extending the Thread class

-8- CS 475

Page 4

Java Threads

Java threads may be created by:
m Extending Thread class
= Implementing the Runnable interface

Java threads are managed by the JVM.

-9- CS 475

Java thread constructor and management
methods

Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group
and be identified as name; the thread will execute the run() method of target.
setPriority(int newPriority), getPriority()
Set and return the thread’s priority.
run()
A thread executes the run() method of its target object, if it has one, and
otherwise its own run() method (Thread implements Runnable).
start()
Change the state of the thread from SUSPENDED to RUNNABLE.
sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.
yield()
Enter the READY state and invoke the scheduler.
destroy()
Destroy the thread.

-10- CS 475

Page 5

Creating threads

class Simple implements Runnable {
public void run() {
System.out.printin(“this is a thread”);
}
}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative strategy: Extend Thread class (not recommended
unless you are creating a new type of Thread)

-1 - CS 475

Pthreads

a POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

API specifies behavior of the thread library,
implementation is up to development of the library.

Common in UNIX operating systems.

-12- CS 475

Page 6

Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs.

m Creating and reaping threads.
® pthread create
® pthread join

m Determining your thread ID
® pthread_self

m Terminating threads
® pthread_cancel
® pthread exit
® exit [terminates all threads], ret [terminates current thread]

m Synchronizing access to shared variables
® pthread mutex init
® pthread mutex [un]lock
® pthread cond_init
® pthread cond_ [timed]wait
-13- CS 475

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" Thread attributes

|_~1 (usually NULL)

void *thread(void *vargp) ;

int main() { Thread arguments
pthread_t tid; L (void *p)

Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL);

exit(0); '\
} return value

- !
(void **p)
/* thread routine */
void *thread(void *vargp) {
printf ("Hello, world!\n");
return NULL;
}
— 14— CS 475

Page 7

Execution of Threaded“hello, world”

call Pthread_create()

Pivoadcrome s | peer thread

call Pthread_join() -

h printf ()
main thread waits for 4 return NULL;
peer thread to terminate (peer thread

terminates)

Pthread_join() returns [«

exit ()
terminates

main thread and
any peer threads

-15- CS 475

Example

/*
* lifecycle.c
* Demonstrate the "life cycle" of a typical thread. A thread is
* created, and then joined.
*/
#include <pthread.h>
#include "errors.h"

/* Thread start routine. */
void *thread_routine (void *arg)
{

return arg;

}

-16— CS 475

Page 8

main (int argec, char *argv[])

{
pthread_t thread_id;
void *thread_result;
int status;
status = pthread_create (
&thread_id, NULL, thread_routine, NULL);
if (status != 0)
err_abort (status, "Create thread");
status = pthread_join (thread_id, &thread_result);
if (status != 0)
err_abort (status, "Join thread");
if (thread_result == NULL)
return 0;
else return 1;
}

-17 - CS 475
Creating and using threads
e Thread states
— Ready
— Running
— Blocked
— Terminated
e the main thread is special
e detaching a thread has no impact on a
running thread except the system to knows
that it can free up resources being used by
that thread when it terminates
-18 - CS 475

Page 9

Example: using threads

#include <pthread.h>
#include "errors.h"

typedef struct alarm_tag {

int seconds;
char message [64] ;
} alarm_t;

void *alarm_thread (void *arg)

{
alarm_t *alarm = (alarm_t*)arg;
int status;
status = pthread_detach (pthread_self ());
—~19- CS 475
if (status != 0)
err_abort (status, "Detach thread");
sleep (alarm->seconds);
printf ("(%d) %s\n", alarm->seconds, alarm->message);
free (alarm);
return NULL;
}
int main (int argc, char *argv[])
{
int status;
char line[128];
alarm_t *alarm;
pthread_t thread;
while (1) {
printf ("Alarm> ");
if (fgets (line, sizeof (line), stdin) == NULL) exit (0);
if (strlen (line) <= 1) continue;
—20— CS 475

Page 10

alarm = (alarm_t*)malloc (sizeof (alarm_t));
if (alarm == NULL)
errno_abort ("Allocate alarm");

/*
* Parse input line into seconds (%d) and a message
* (%64["\n]), consisting of up to 64 characters
* separated from the seconds by whitespace.
*/
if (sscanf (line, "%d %64["\n]",
&alarm->seconds, alarm->message) < 2) {
fprintf (stderr, "Bad command\n");
free (alarm);
} else {
status = pthread_create (
&thread, NULL, alarm_thread, alarm);
if (status != 0)
err_abort (status, "Create alarm thread");

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak.

m At any point in time, a thread is either joinable or detached.
m Joinable thread can be reaped and killed by other threads.

® must be reaped (with pthread_join) to free memory

resources.

m Detached thread cannot be reaped or killed by other threads.

® resources are automatically reaped on termination.
m Default state is joinable.

® use pthread detach (pthread self()) to make detached.

Must be careful to avoid unintended sharing.

All functions called by a thread must be thread-safe

m (next lecture)

Page 11

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
m e.d., logging information, file cache.

+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

m The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads.

= (next lecture)

—-23 - CS 475

Page 12

