Processes & Signals

CS 475

This lecture is based on Chapter 8 of Computer Systems:
A Programmer’s Perspective (Bryant & O'Halloran)

Processes

Def: A process is an instance of a running program.
m One of the most profound ideas in computer science.
= Not the same as “program” or “processor”

Process provides each program with two key
abstractions:

m Logical control flow
e Each program seems to have exclusive use of the CPU.

m Private address space
o Each program seems to have exclusive use of main memory.
How are these lllusions maintained?
m Process executions interleaved (multitasking)
m Address spaces managed by virtual memory system

-2- CS 475

1/24/10

Logical Control Flows

Each process has its own logical control flow

Process A Process B Process C

Time

CS 475

Concurrent Processes

Two processes run concurrently (are concurrent) if

their flows overlap in time.
Otherwise, they are sequential.

Examples:
m Concurrent: A&B,A&C
m Sequential: B & C

Process A Process B Process C

Time

CS 475

1/24/10

User View of Concurrent Processes
Control flows for concurrent processes are physically
disjoint in time.

However, we can think of concurrent processes are
running in parallel with each other.

Process A Process B Process C

Time

-5- CS 475

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel
= Important: the kernel is not a separate process, but rather
runs as part of some user process

Control flow passes from one process to another via a
context switch.

1

ProcessA 1 Process B

code ' code
: user code
! kernel code } context switch

Time 1
: user code
] kernel code } context switch
[}
! user code
1
-6— ! CS 475

1/24/10

Private Address Spaces

Each process has its own private address space.

Oxffffffff

0xc0000000

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

—

i

memory mapped region for|
shared libraries

!

run-time heap
(managed by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

“— brk

%esp (stack pointer)

loaded from the
executable file

CS 475

fork: Creating new processes

int fork (void)

m creates a new process (child process) that is identical to the
calling process (parent process)

m returns 0 to the child process

m returns child’s pid to the parent process

} else {

}

if (fork() == 0) {
printf ("hello from child\n");

printf ("hello from parent\n");

Fork is interesting
(and often confusing)
because it is called
once but returns twice

CS 475

1/24/10

Fork Example #1

Key Points
m Parent and child both run same code
@ Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

o Including shared output file descriptor
o Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) |
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);

}

printf ("Bye from process %d with x = %d\n", getpid(), x);

CS 475

Fork Example #2

Key Points
= Both parent and child can continue forking

void fork2 ()
{
printf ("LO\n") ;

Bye
fork () ; . 1—BL
printf ("L1\n"); <

fork():; Bye
printf ("Bye\n") ; L0 | L1 |Bye

—~10-

CS 475

1/24/10

Fork Example #3

Key Points

= Both parent and child can continue forking

void fork3()

{
printf ("LO\n") ;

fork();
printf ("L1\n");
fork():;
printf ("L2\n") ;
fork();

printf ("Bye\n");

L0

B

e

L2 Bye
Bye

Ll |L2 | Bye
Bye

L2 Bye

B

e

11 |12 | Bye

—11 - CS 475
Fork Example #4
Key Points
= Both parent and child can continue forking
void fork4 ()
{
printf ("LO\n") ;
if (fork() != 0) {
printf ("L1\n");
if (fork() !'= 0) { — Bye
printf ("L2\n") ;
fork () ; __ Bve
} Bye
} LO | L1 | L2 | Bye
printf ("Bye\n") ;
}
1o CS 475

1/24/10

Fork Example #5

Key Points
= Both parent and child can continue forking

void fork5()
{
printf ("LO\n") ;

if (fork() == 0) {

printf ("L1\n");

if (fork() == 0) {
printf ("L2\n") ;
fork();

}
}
printf ("Bye\n") ;

-13- CS 475

exit: Destroying Process

void exit(int status)

m exits a process
® Normally return with status 0

m atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void forko () {
atexit (cleanup) ;
fork();
exit (0) ;

14— CS 475

1/24/10

Idea

Zombies

m When process terminates, still consumes system resources
e Various tables maintained by OS

m Called a “zombie”
® Living corpse, half alive and half dead

Reaping

m Performed by parent on terminated child
m Parent is given exit status information
m Kernel discards process

What if Parent Doesn’t Reap?
= If any parent terminates without reaping a child, then child
will be reaped by init process
= Only need explicit reaping for long-running processes
e E.g., shells and servers

15—

CS 475

Zombie
Example

linux> ./forks 7 &
[1] 6639

void fork7()
{
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0);
} else {
printf ("Running Parent, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */

Running Parent, PID = 6639)

Terminating Child, PID
linux> ps
PID TTY TIME
6585 ttyp9 00:00:00
6639 ttyp9 00:00:03
6640 ttyp9 00:00:00
6641 ttyp9 00:00:00
linux> kill 6639

[1] Terminated
linux> ps
PID TTY TIME
6585 ttyp9 00:00:00
6642 ttyp9 00:00:00
16—

6640

CMD .
tcsh = ps shows child
forks process as “defunct”

forks <defunct>

oe m Killing parent allows

child to be reaped

CMD
tcsh
pPs
CS 475

1/24/10

Nonterminating| -~
Child R

printf ("Running Child, PID = %d\n",

Example
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
linux> ./forks 8 exit (0) ;

Terminating Parent, PID = 6675 }
Running Child, PID = 6676 }

linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks m Child process still active
6677 ttypd ~ 00:00:00 ps even though parent has
linux> kill 6676 .
linux> ps terminated
PID TTY TIME CMD m Must kill explicitly, or else

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps will keep running

indefinitely

-17 - CS 475

wait: Synchronizing with children

int wait(int *child_status)
m suspends current process until one of its children
terminates
m return value is the pid of the child process that terminated

m if child status !'= NULL, then the object it points to will
be set to a status indicating why the child process
terminated

-18 - CS 475

1/24/10

wait: Synchronizing with children

—~ 19—

void fork9() {

int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
}
else {
printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ; HC Bye
exit () ;

HP CT Bye

CS 475

Wait Example

= If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forkl1lO ()

{

pid t pid[N];
int 1i;
int child status;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+1i); /* Child */
for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED(child_Status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)):;
else
printf ("Child %d terminate abnormally\n", wpid);

1/24/10

10

Waitpid
m waitpid(pid, &status, options)

e Can wait for specific process
e Various options

void forkll ()
{
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++4)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf ("Child %d terminated abnormally\n", wpid);

-21- CS 475

Wait/Waitpid Example Outputs

Using wait (fork10)

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Using waitpid (forkll)

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

—-22— CS 475

1/24/10

11

exec: Running new programs

int execl (char *path, char *arg0, char *argl, ..,
m loads and runs executable at path with args arg0, argl, ...
® path is the complete path of an executable
® arg0 becomes the name of the process
» typically argo0 is either identical to path, or else it contains
only the executable filename from path
e “real” arguments to the executable start with argl, etc.
e list of args is terminated by a (char *)0 argument

= returns -1 if error, otherwise doesn’t return!

0)

main () {
if (fork() == 0) {
execl ("/usr/bin/cp", "cp", "foo", "bar", 0);

}
wait (NULL) ;

printf ("copy completed\n");
exit () ;

—-23— CS 475

The World of Multitasking

System Runs Many Processes Concurrently

m Process: executing program
e State consists of memory image + register values + program

counter
m Continually switches from one process to another
@ Suspend process when it needs I/O resource or timer event

occurs
® Resume process when I/O available or given scheduling priority

m Appears to user(s) as if all processes executing

simultaneously
e Even though most systems can only execute one process at a
time
e Except possibly with lower performance than if running alone

24— CS 475

1/24/10

12

Programmer’s Model of Multitasking

Basic Functions

m fork () spawns new process
@ Called once, returns twice

m exit () terminates own process
o Called once, never returns
e Puts it into “zombie” status

m wait () and waitpid () wait for and reap terminated
children

m execl () and execve () run a new program in an existing
process
o Called once, (normally) never returns

Programming Challenge
m Understanding the nonstandard semantics of the functions
= Avoiding improper use of system resources
e E.g. “Fork bombs” can disable a system.

—-25— CS 475

Unix Process Hierarchy

[0]

initE

n shell

—-26— CS 475

1/24/10

13

Unix Startup: Step 1

1. Pushing reset button loads the pC with the address of a small

bootstrap program.

2. Bootstrap program loads the boot block (disk block 0).

3. Boot block program loads kernel binary (e.g., /boot/vmlinux)
4. Boot block program passes control to kernel.

5. Kernel handcrafts the data structures for process 0.

[0] Process 0: handcrafted kernel process

Process 0 forks child process 1

@ Child process 1 execs /sbin/init

—27 —

CS 475

Unix Startup: Step 2

[0]

initE
Daemons @
... eg.ftpd, httpd

/etc/inittab ‘—»

—28 —

init forks and execs
daemons per /etc/
inittab, and forks and
execs a getty program for
the console

CS 475

1/24/10

14

Unix Startup: Step 3

[0]

29—

The getty process
execs a login
program

CS 475

Unix Startup: Step 4

[0]

—-30-—

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

CS 475

1/24/10

15

Shell Programs

A shell is an application program that runs programs on
behalf of the user.
= sh — Original Unix Bourne Shell
m csh - BSD Unix C Shell, tesh - Enhanced C Shell
m bash -Bourne-Again Shell

int main()

{
char cmdline[MAXLINE] ;

while (1) { . .
/* read */ Execution is a sequence of
printf ("> ") ; read/evaluate steps

Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0) ;

/* evaluate */

eval (cmdline) ;
-31- } CS 475

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit(0);
}
}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
. printf ("%d %s", pid, cmdline);
—oz— UD 470

}

1/24/10

16

1/24/10

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs.

But what about background jobs?
= Will become zombies when they terminate.

= Will never be reaped because shell (typically) will not
terminate.

m Creates a memory leak that will eventually crash the kernel
when it runs out of memory.

Solution: Reaping background jobs requires a
mechanism called a signal.

-33- CS 475

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.
m Kernel abstraction for exceptions and interrupts.

m Sent from the kernel (sometimes at the request of another
process) to a process.

m Different signals are identified by small integer ID’s
m The only information in a signal is its ID and the fact that it

arrived.
ID Name Default Action Corresponding Event
2| SIGINT | Terminate Interrupt from keyboard (ctl-c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14| SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated
-34- CS 475

17

Signal Concepts

Sending a signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process.

m Kernel sends a signal for one of the following reasons:

o Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

® Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

-35- CS 475

Signal Concepts (cont)

Receiving a signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.
m Three possible ways to react:
@ Ignore the signal (do nothing)
o Terminate the process.
® Caich the signal by executing a user-level function called a
signal handler.

» Akin to a hardware exception handler being called in
response to an asynchronous interrupt.

-36— CS 475

1/24/10

18

Signal Concepts (cont)

A signal is pending if it has been sent but not yet
received.
m There can be at most one pending signal of any particular
type.
= Important: Signals are not queued

e If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.

= Blocked signals can be delivered, but will not be received until
the signal is unblocked.

A pending signal is received at most once.

-37- CS 475

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process.

m pending - represents the set of pending signals
o Kernel sets bit k in pending whenever a signal of type k is
delivered.
o Kernel clears bit k in pending whenever a signal of type k is
received
m blocked - represents the set of blocked signals
® Can be set and cleared by the application using the
sigprocmask function.

-38-— CS 475

1/24/10

19

Process Groups

Every process belongs to exactly

one process group

pid=10
pgid=10

pid=20
pgid=20

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20
— 39 —

Background
process group 32

Background
process group 40

getpgrp () — Return process
group of current process

setpgid () - Change process
group of a process

CS 475

Sending Signals with kill Program

kill program sends
arbitrary signal to a
process or process

group

Examples

m kill -9 24818
® Send SIGKILL to
process 24818
m kill -9 -24817
® Send SIGKILL to

every process in

process group
24817.

—40-

linux> ./forks 16
linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY
24788 pts/2
24818 pts/2
24819 pts/2
24820 pts/2
linux> kill
linux> ps
PID TTY
24788 pts/2
24823 pts/2
linux>

TIME
00:00:00
00:00:02
00:00:02
00:00:00
-24817

TIME
00:00:00
00:00:00

CMD
tcsh
forks
forks

Ps

CMD
tecsh
ps

CS 475

1/24/10

20

Sending Signals from the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGTERM (SIGTSTP) to every job in
the foreground process group.

m SIGTERM - default action is to terminate each process
m SIGTSTP - default action is to stop (suspend) each process

ipid=20 ack? ' pidea0
pgid=20 ! gy
N p 1 pgid=40

: i Background Background
! ! process process
i i group 32 group 40
| pid=21 pid=22 |
| Pgid=20 pgid=20 i

Foreground

process group 20

—41- CS 475

Example of ctrl-c and ctrl-z

linux> ./forks 17

Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
<typed ctrl-z>

Suspended
linux> ps a
PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tesh -i
24867 pts/2 T 0:01 ./forks 17
24868 pts/2 T 0:01 ./forks 17
24869 pts/2 R 0:00 ps a
bass> fg
./forks 17
<typed ctrl-c>
linux> ps a
PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24870 pts/2 R 0:00 ps a
_42 CS 475

1/24/10

21

Sending Signals with kill Function

void forkl2()
{
pid_t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(l); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {

printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT);

}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid) ;
}

—-43 - CS 475

Receiving Signals

Suppose kernel is returning from exception handler
and is ready to pass control to process p.

Kernel computes pnb = pending & ~blocked
m The set of pending nonblocked signals for process p

If (pnb == 0)
m Pass control to next instruction in the logical flow for p.

Else

m Choose least nonzero bit kin pnb and force process p to
receive signal k.

m The receipt of the signal triggers some action by p
= Repeat for all nonzero kin pnb.
m Pass control to next instruction in logical flow for p.

—44 - CS 475

1/24/10

22

Default Actions

Each signal type has a predefined default action, which
is one of:
m The process terminates
m The process terminates and dumps core.
m The process stops until restarted by a SIGCONT signal.
m The process ignores the signal.

— 45— CS 475

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum:

® handler_t *signal (int signum, handler_t *handler)

Different values for handler:
m SIG_IGN: ignore signals of type signum
m SIG_DFL: revert to the default action on receipt of signals of
type signum.

m Otherwise, handler is the address of a signal handler
@ Called when process receives signal of type signum
o Referred to as “installing” the handler.
e Executing handler is called “caiching” or “handling” the signal.
® When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal.

—46 - CS 475

1/24/10

23

Signal Handling Example

void int handler (int sig)

{

printf ("Process %d received signal %d\n",
getpid(), sig);

24973
24974
24975
24976
249717

Process 24977 received signal 2
Child 24977 terminated with exit status 0

Process 24976 received signal 2

Child 24976 terminated with exit status 0
Process 24975 received signal 2
Child 24975 terminated with exit status 0
Process 24974 received signal 2
Child 24974 terminated with exit status 0
Process 24973 received signal 2
Child 24973 terminated with exit status 0

exit(0);
}
linux> ./forks 13
void forkl3() Killing process
{)) Killing process
pid_t pid|[N]; Killing process
int i, child status; Killing process
signal (SIGINT, int handler); Killing process
}
linux>
—47 —

CS 475

Signal Handler Funkiness

Pending signals are not

int ccount = 0;
void child handler (int sig)

{

}

int child_status;

pid_t pid = wait(&child status);

ccount--;

printf ("Received signal %d from process %d\n",
sig, pid);

void forkl4 ()

{

}

pid_t pid[N];

int i, child status;

ccount = N;

signal (SIGCHLD, child handler);
for (1 = 0; 1 < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit(0) ;

}
while (ccount > 0)
pause () ;/* Suspend until signal occurs */

FO —

queued

m For each signal type,
just have single bit
indicating whether or
not signal is pending

= Even if multiple
processes have sent
this signal

CS 475

1/24/10

24

Living With Nonqueuing Signals

Must check for all terminated jobs
m Typically loop with waitpid

void child handler2 (int sig)

{
int child status;
pid_t pid;
while ((pid = waitpid(-1,&child status,WNOHANG)) > 0) {
ccount--;
printf ("Received signal %d from process %d\n", sig, pid);
}

}

void forkl5 ()
{

signal (SIGCHLD, child handler2) ;

_49— CS 475

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
printf ("You think hitting ctrl-c will stop the bomb?\n") ;
sleep(2) ;
printf ("Well...");
fflush (stdout) ;
sleep (1) ;
printf ("OK\n") ;
exit(0);
}

main () {
signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {
}

}

-50- CS 475

1/24/10

25

A Program That Reacts to Internally

Generated Events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler (int sig) {
printf ("BEEP\n") ;
fflush (stdout) ;

if (++beeps < 5)
alarm(1l) ;
else {
printf ("BOOM!\n") ;
exit(0) ;
}
}

main() {
signal (SIGALRM, handler) ;
alarm(l); /* send SIGALRM in
1 second */

while (1) {
/* handler returns here */
}
}

—_51—

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

CS 475

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for transferring

control to an arbitrary location.

m Controlled to way to break the procedure call/return discipline
m Useful for error recovery and signal handling

int setjmp (jmp_buf j)
m Must be called before longjmp

= |dentifies a return site for a subsequent longjmp.
m Called once, returns one or more times

Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf.

= Return 0

52

CS 475

1/24/10

26

setjmp/longjmp (cont)

void longjmp (jmp buf j, int i)
= Meaning:
® return from the setjmp remembered by jump buffer j again...
® ...this time returning i instead of 0

m Called after setjmp
= Called once, but never returns

longjmp Implementation:
m Restore register context from jump buffer j
m Set %eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j.

-53- CS 475

setjmp/longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
if (setjmp(buf) !'= 0) {
printf ("back in main due to an error\n");
else

printf ("first time through\n");
pl(); /* pl calls p2, which calls p3 */
}
p30) {
<error checking code>
if (error)
longjmp (buf, 1)

54 CS 475

1/24/10

27

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler (int sig) {
siglongjmp (buf, 1);

}

main() {
if (!sigsetjmp (buf, 1))

printf ("starting\n") ;
else

while (1) {
sleep(1) ;
printf ("processing...\n");
}
}

signal (SIGINT, handler);

printf ("restarting\n") ;

— 55 —

bass> a.out
starting
processing. ..
processing. ..
restarting
processing. ..
processing. ..
processing. ..
restarting
processing. ..
restarting
processing. ..
processing. ..

+«——Ctrl-c

+——Ctrl-c

+——Ctrl-c

CS 475

Limitations of Nonlocal Jumps

Works within stack discipline
m Can only long jump to environment of function that has been

called but not yet completed

jmp_buf env;

P1()

{
if (setjmp(env)) {

} else {
P2();
}
}

P2 ()
{ . . .P2(); . . .

P3()

{
longjmp (env, 1);

—-56— }

/* Long Jump to here */

P2

P2

P2

P3

}
Before longjmp

CS 475

|Hi!|||||

After longjmp

1/24/10

28

Limitations of Long Jumps (cont.)

Works within stack discipline

m Can only long jump to environment of function that has been
called but not yet completed

jmp_buf env;

P1()
{

P2(); P3();
}

At setjmp

P2()
{

if (setjmp(env)) { env
/* Long Jump to here */
}
} P2 returns

{

longjmp (env, 1);
} At longjmp
—-57 - CS 475

Summary

Signals provide process-level exception handling
= Can generate from user programs
m Can define effect by declaring signal handler

Some caveats

m Very high overhead
e >10,000 clock cycles
e Only use for exceptional conditions

= Don’t have queues
e Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within
process

m Within constraints of stack discipline

-58-— CS 475

1/24/10

29

Summarizing (cont.)

Spawning Processes
m Call to fork
® One call, two returns

Terminating Processes

m Call exit
@ One call, no return

Reaping Processes
m Call wait or waitpid

Replacing Program Executed by Process

m Call execl (or variant)
® One call, (normally) no return

—59 —

CS 475

1/24/10

30

