
1/24/10	

1	

Processes & Threads

CS 475

CS 475 2

Concurrent Programs

 Process = Address space + one thread of
control

 Concurrent program = multiple threads of
control
  Multiple single-threaded processes
  Multi-threaded process

1/24/10	

2	

Distributed Software Systems 3

Concurrent Systems

  Essential aspects of any concurrent system
  Execution context - state of a concurrent entity

•  Processes: process context
•  Threads: thread context

  Scheduling - deciding which context will run next
•  Processes: Operating System scheduler
•  Threads: Library thread scheduler (Pthreads), Java

runtime
  Synchronization - mechanisms that enable execution

contexts to coordinate their use of shared resources
•  Semaphores, locks, monitors, condition variables
•  Provided at both operating system and library/language

level

Processes
  Def: A process is an instance of a running program.

  One of the most profound ideas in computer science.
  Not the same as “program” or “processor”

  Process provides each program with two key
abstractions:
  Logical control flow

•  Each program seems to have exclusive use of the CPU.
  Private address space

•  Each program seems to have exclusive use of main
memory.

  How are these illusions maintained?
  Process executions interleaved (multitasking)
  Address spaces managed by virtual memory system

4 CS 475

1/24/10	

3	

Traditional View of a Process
  Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)
Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

read-only code/data

stack SP

PC

brk

Process context

5 CS 475

CS 475 6

Threads: Motivation

 Traditional processes created and managed
by the OS kernel

 Process creation expensive - fork system
call in UNIX

 Context switching expensive
 Cooperating processes - no need for

memory protection (separate address
spaces)

1/24/10	

4	

Alternate View of a Process
  Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stack SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

7 CS 475

A Process With Multiple Threads
  Multiple threads can be associated with a process

  Each thread has its own logical control flow (sequence of PC values)
  Each thread shares the same code, data, and kernel context
  Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

8 CS 475

1/24/10	

5	

CS 475 9

Threads

 Execute in same address space
  separate execution stack, share access to code

and (global) data
 Smaller creation and context-switch time
 Can exploit fine-grain concurrency

Creating processes

 UNIX
  fork system call
  Used in conjunction with exec system call

CS 475 10

1/24/10	

6	

fork: Creating new processes

 int fork(void)
  creates a new process (child process) that is

identical to the calling process (parent process)
  returns 0 to the child process
  returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

Distributed Software Systems 12

Creating and Using threads

 Pthreads Multi-threading Library
  API for
  pthread_create, pthread_join,
pthread_self, pthread_exit,
pthread_detach

 Java
  provides a Runnable interface and a Thread class

as part of standard Java libraries
•  users program threads by implementing the
Runnable interface or extending the Thread class

1/24/10	

7	

Distributed Software Systems 13

Concurrent Systems

  Essential aspects of any concurrent system
  Execution context - state of a concurrent entity

•  Processes: process context
•  Threads: thread context

  Scheduling - deciding which context will run next
•  Processes: Operating System scheduler
•  Threads: Library thread scheduler (Pthreads), Java

runtime
  Synchronization - mechanisms that enable execution

contexts to coordinate their use of shared resources
•  Semaphores, locks, monitors, condition variables
•  Provided at both operating system and library/language

level

Road Map

 Next two lectures: Processes & Signals in
UNIX
  Repetition of material discussed in CS 367
  Assignment 1 (Shell Lab)

 Thread creation and management in Java
and Pthreads (one lecture)

 Process & Thread synchronization
mechanisms (two – three lectures)

CS 475 14

