
1/24/10	

1	

Processes & Threads

CS 475

CS 475 2

Concurrent Programs

 Process = Address space + one thread of
control

 Concurrent program = multiple threads of
control
  Multiple single-threaded processes
  Multi-threaded process

1/24/10	

2	

Distributed Software Systems 3

Concurrent Systems

  Essential aspects of any concurrent system
  Execution context - state of a concurrent entity

•  Processes: process context
•  Threads: thread context

  Scheduling - deciding which context will run next
•  Processes: Operating System scheduler
•  Threads: Library thread scheduler (Pthreads), Java

runtime
  Synchronization - mechanisms that enable execution

contexts to coordinate their use of shared resources
•  Semaphores, locks, monitors, condition variables
•  Provided at both operating system and library/language

level

Processes
  Def: A process is an instance of a running program.

  One of the most profound ideas in computer science.
  Not the same as “program” or “processor”

  Process provides each program with two key
abstractions:
  Logical control flow

•  Each program seems to have exclusive use of the CPU.
  Private address space

•  Each program seems to have exclusive use of main
memory.

  How are these illusions maintained?
  Process executions interleaved (multitasking)
  Address spaces managed by virtual memory system

4 CS 475

1/24/10	

3	

Traditional View of a Process
  Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)
Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

read-only code/data

stack SP

PC

brk

Process context

5 CS 475

CS 475 6

Threads: Motivation

 Traditional processes created and managed
by the OS kernel

 Process creation expensive - fork system
call in UNIX

 Context switching expensive
 Cooperating processes - no need for

memory protection (separate address
spaces)

1/24/10	

4	

Alternate View of a Process
  Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stack SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

7 CS 475

A Process With Multiple Threads
  Multiple threads can be associated with a process

  Each thread has its own logical control flow (sequence of PC values)
  Each thread shares the same code, data, and kernel context
  Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

8 CS 475

1/24/10	

5	

CS 475 9

Threads

 Execute in same address space
  separate execution stack, share access to code

and (global) data
 Smaller creation and context-switch time
 Can exploit fine-grain concurrency

Creating processes

 UNIX
  fork system call
  Used in conjunction with exec system call

CS 475 10

1/24/10	

6	

fork: Creating new processes

 int fork(void)
  creates a new process (child process) that is

identical to the calling process (parent process)
  returns 0 to the child process
  returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

Distributed Software Systems 12

Creating and Using threads

 Pthreads Multi-threading Library
  API for
  pthread_create, pthread_join,
pthread_self, pthread_exit,
pthread_detach

 Java
  provides a Runnable interface and a Thread class

as part of standard Java libraries
•  users program threads by implementing the
Runnable interface or extending the Thread class

1/24/10	

7	

Distributed Software Systems 13

Concurrent Systems

  Essential aspects of any concurrent system
  Execution context - state of a concurrent entity

•  Processes: process context
•  Threads: thread context

  Scheduling - deciding which context will run next
•  Processes: Operating System scheduler
•  Threads: Library thread scheduler (Pthreads), Java

runtime
  Synchronization - mechanisms that enable execution

contexts to coordinate their use of shared resources
•  Semaphores, locks, monitors, condition variables
•  Provided at both operating system and library/language

level

Road Map

 Next two lectures: Processes & Signals in
UNIX
  Repetition of material discussed in CS 367
  Assignment 1 (Shell Lab)

 Thread creation and management in Java
and Pthreads (one lecture)

 Process & Thread synchronization
mechanisms (two – three lectures)

CS 475 14

