
1

 RMI 1

Remote Method Invocation –
Design & Implementation

CS 475

 RMI 2

Middleware layers

Applications, services

Middleware
layers

request-reply protocol
marshalling and external data representation

UDP and TCP

RMI and RPC

2

 RMI 3

Distributed Objects

  Common organization of a remote object with client-side
proxy.

2-16

 RMI 4

Compile-time vs run-time objects
  Objects can be implemented in many different

ways
  compile-time objects, i.e. instances of classes written in

object-oriented languages like Java, C++
  database objects
  procedural languages like C, with a appropriate “wrapper

code” that gives it the appearance of an object
  Systems like Java RMI support compile-time

objects
  Not possible or difficult in language-independent

RMI middleware such as CORBA
  these systems use object adapters
  implementations of object interfaces are registered at an

object adapter, which acts as an intermediary between
the client and object implementation

3

 RMI 5

Persistent vs transient objects

  Persistent objects continue to exist even if they
are not contained in the address space of a server
process

  The “state” of a persistent object has to be stored
on a persistent store, i.e., secondary storage

  Invocation requests result in an instance of the
object being created in the address space of a
running process
  many policies possible for object instantiation and (de)

instantiation
  Transient objects only exist as long as their

container server processes are running

 RMI 6

Static vs dynamic remote method invocations

  Typical way for writing code that uses RMI is similar
to the process for writing RPC
  declare the interface in IDL, compile the IDL file to generate

client and server stubs, link them with client and server side
code to generate the client and the server executables

  referred to as static invocation
  requires the object interface to be known when the client is

being developed
  Dynamic invocation

  the method invocation is composed at run-time
invoke(object, method, input_parameters, output_parameters)

  useful for applications where object interfaces are discovered
at run-time, e.g. object browser, batch processing systems for
object invocations, “agents”

4

 RMI 7

Design Issues for RMI
  RMI Invocation Semantics

  Invocation semantics depend upon implementation of Request-
Reply protocol used by RMI

  Maybe, At-least-once, At-most-once
  Transparency

  Should remote invocations be transparent to the programmer?
•  Partial failure, higher latency
•  Different semantics for remote objects, e.g. difficult to implement

“cloning” in the same way for local and remote objects or to support
synchronization operations, e.g. wait/notify

  Current consensus: remote invocations should be made
transparent in the sense that syntax of a remote invocation is
the same as the syntax of local invocation (access transparency)
but programmers should be able to distinguish between remote
and local objects by looking at their interfaces, e.g. in Java RMI,
remote objects implement the Remote interface

 RMI 8

Issues in implementing RMI

  Parameter Passing
  Request-Reply Protocol

 Handling failures at client and/or server
 Supporting persistent objects, object

adapters, dynamic invocations, etc.

5

 RMI 9

Request-reply communication

Request

Server Client

doOperation

(wait)

(continuation)
Reply
message

getRequest

execute
method

message
select object

sendReply

 RMI 10

Operations of the request-reply
protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)	

sends a request message to the remote object and returns the reply. 	

The arguments specify the remote object, the method to be invoked and the
arguments of that method.	

public byte[] getRequest ();	

acquires a client request via the server port.	

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 	

sends the reply message reply to the client at its Internet address and port.	

6

 RMI 11

Request-reply message structure

messageType	

requestId	

objectReference	

methodId	

arguments	

int (0=Request, 1= Reply)	

int	

RemoteObjectRef	

int or Method	

array of bytes	

 RMI 12

Representation of a remote object
reference

Internet address	
 port number	
 time	
 object number	
 interface of 	

remote object	

32 bits	
 32 bits	
 32 bits	
 32 bits	

7

 RMI 13

CORBA interoperable object
references

IOR format	

IDL interface type name	
Protocol and address details	
 Object key	

interface repository	

identifier	

IIOP	
 host domain	

name	

 port number	
 adapter name	
 object name	

 RMI 14

Request-Reply protocol

  Issues in marshaling of parameters and results
  Input, output, Inout parameters
  Data representation
  Handling reference parameters

  Distributed object references
  Handling failures in request-reply protocol

  Partial failure
•  Client, Server, Network

8

 RMI 15

Marshalling

  Pack method arguments and results into a
flat array of bytes

 Use a canonical representation of data
types, e.g. integers, characters, doubles

  Examples
 SUN XDR
 CORBA CDR
 Java serialization

 RMI 16

Parameter Passing: local vs remote objects

  The situation when passing an object by reference or by
value.

2-18

Remote object references are passed by reference where local object
references are passed by value

9

 RMI 17

CORBA CDR for constructed types

T	
y	
p	
e	
 Re	
pr	
e	
s	
e	
n	
ta	
t	
i	
o	
n	

s	
e	
q	
ue	
n	
ce	
 l	
e	
n	
g	
th	
(
u	
n	
si	
g	
n	
ed	
l	
o	
n	
g	
) 	
fo	
ll	
ow	
ed 	
b	
y	
el	
e	
m	
e	
nt	
s	
i	
n 	
o	
r	
d	
e	
r	

s	
t	
ri	
n	
g	
 l	
e	
n	
g	
th	
(
u	
n	
si	
g	
n	
ed	
l	
o	
n	
g	
) 	
fo	
ll	
ow	
ed 	
b	
y	
ch	
a	
ra	
c	
te	
rs 	
i	
n o	
r	
d	
e	
r	
(
ca	
n	
 al	
so	

ca	
n	
h	
av	
e 	
w	
i	
de	
ch	
a	
ra	
c	
te	
rs)	

a	
r	
ra	
y	
 a	
rr	
ay 	
e	
le	
m	
e	
n	
t	
s i	
n	
o	
r	
de	
r (
n	
o l	
en	
g	
t	
h s	
p	
e	
ci	
f	
ie	
d b	
eca	
us	
e 	
i	
t 	
is 	
f	
i	
x	
e	
d	
)	

s	
t	
ru	
ct	
 i	
n t	
he 	
or	
de	
r o	
f	
de	
c	
la	
r	
at	
i	
o	
n o	
f 	
t	
he	
co	
mp	
o	
n	
e	
n	
t	
s	

e	
n	
u	
m	
e	
r	
a	
t	
e	
d	
 u	
n	
s	
i	
g	
n	
e	
d	
l	
o	
n	
g 	
(
t	
h	
e 	
v	
a	
l	
ue	
s a	
re	
 s	
pe	
c	
i	
f	
ie	
d 	
b	
y t	
he	
o	
r	
de	
r d	
ec	
l	
ar	
e	
d	
)	

u	
ni	
o	
n	
 t	
y	
p	
e 	
ta	
g f	
o	
l	
l	
o	
we	
d b	
y 	
t	
h	
e s	
el	
e	
cte	
d m	
e	
mb	
er	

 RMI 18

CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3	

4–7	

8–11	

12–15	

16–19	

20-23	

24–27	

5	

"Smit"	

"h___"	

 6	

"Lond"	

"on__"	

1934	

index in 	

sequence of bytes	
 4 bytes	

notes 	

on representation	

length of string	

‘Smith’	

length of string	

‘London’	

unsigned long	

10

 RMI 19

Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values	

Person	

3	

1934	

 8-byte version number	

int year	

5 Smith	

java.lang.String	

name:	

6 London	

h0	

java.lang.String	

place:	

h1	

Explanation	

class name, version number	

number, type and name of 	

instance variables 	

values of instance variables	

 RMI 20

RPC exchange protocols

N	
a	
m	
e	
 M	
es	
sag	
es 	
s	
e	
nt b	
y	

C	
li	
e	
nt	
 S	
e	
r	
ve	
r	
 C	
li	
e	
nt	

R	
 R	
e	
qu	
es	
t	

R	
R	
 R	
e	
qu	
es	
t	
 R	
e	
pl	
y	

R	
R	
A	
 R	
e	
qu	
es	
t	
 R	
e	
pl	
y	
 A	
ck	
no	
w	
ledg	
e re	
ply	

11

 RMI 21

Handling failures

 Types of failure
 Client unable to locate server
 Request message lost
 Reply message lost
 Server crashes after receiving a request
 Client crashes after sending a request

 RMI 22

Handling failures

  Client cannot locate server
 Reasons

•  Server has crashed
•  Server has moved
•  (RPC systems) client compiled using old version of

service interface
 System must report error (remote exception)

to client
•  Loss of transparency

12

 RMI 23

Handling failures

  Lost request message
 Retransmit a fixed number of times before

throwing an exception
  Lost reply message

 Client resubmits request
 Server choices

•  Re-execute procedure service should be
idempotent so that it can be repeated safely

•  Filter duplicates server should hold on to results
until acknowledged

 RMI 24

Invocation semantics

Fault tolerance measures	
 Invocation 	

semantics	

Retransmit request 	

message	

Duplicate 	

filtering	

Re-execute procedure 	

or retransmit reply	

No	

Yes	

Yes	

Not applicable	

No	

Yes	

Not applicable	

Re-execute procedure	

Retransmit reply	
 At-most-once	

At-least-once	

Maybe	

13

 RMI 25

Handling failures

 Server crashes

Recv
Exec
Reply

Recv
Exec
Crash

Recv
Crash

REQ

REP

REQ REQ

NO
REP

NO
REP

Client cannot tell difference

 RMI 26

Handling failures

  Server crashes
  At least once (keep trying till server comes up again)
  At most once (return immediately)
  Exactly once impossible to achieve

  SUN RPC
  At least once semantics on successful call and maybe

semantics if unsuccessful call
  CORBA, Java RMI

  at most once semantics

14

 RMI 27

Handling failures

  Implementing the request-reply protocol on
top of TCP
 Does it provide applications with different

invocation semantics?
•  NO!

–  TCP does not help with server crashes
–  If a connection is broken, the end pts do not have any

guarantees about the delivery of messages that may have
been in transit

 RMI 28

Handling failures

  Client crashes
  If client crashes before RPC returns, we have

an “orphan” computation at server
•  Wastes resources, could also start other

computations
 Orphan detection

•  Reincarnation (client broadcasts new “epoch” when it
comes up again)

•  Expiration (RPC has fixed amount of time T to do
work)

15

 RMI 29

RMI Software Components

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 server	

 RMI 30

RMI Software Components

  Communication module
  Implements the request-reply protocol

  Remote reference module
 Responsible for translating between local and

remote object references and for creating
remote object references

•  Maintains remote object table that maintains a
mapping between local & remote object references

•  E.g. Object Adaptor in CORBA

16

 RMI 31

RMI – Object Activation

 Activation of remote objects
 Some applications require that information

survive for long periods of times
 However, objects not in use all the time, so

keeping them in running processes is a potential
waste of resources

  Object can be activated on demand
•  E.g. standard TCP services such as FTP on UNIX

machines are activated by inetd

 RMI 32

Object Activation
  Active and passive objects

  Active object = instantiated in a running process
  Passive object = not currently active but can be made

active
•  Implementation of its methods, and marshalled state stored

on disk
  Activator responsible for

  Registering passive objects that are available for activation
  Starting named server processes and activating remote

objects in them
  Keeping track of locations of servers for remote objects

that it has already activated
  Examples: CORBA implementation repository, JAVA

RMI has one activator on each server computer

17

 RMI 33

RMI – Other topics

  Persistent object stores
  An object that is guaranteed to live between activations of

processes is called a persistent object
  Stores the state of an object in a marshalled (serialized)

form on disk
  Location service

  Objects can migrate from one system to another during
their lifetime

  Maintains mapping between object references and the
location of an object

 RMI 34

RMI – Other topics
  Distributed Garbage Collection

  Needed for reclaiming space on servers
  Passing “behavior”

  Java allows objects (data + code) to be passed by value
•  If the class for an object passed by value is not present in a

JVM, its code is downloaded automatically
  See Java RMI tutorial example

  Use of Reflection in Java RMI
  Allows construction of generic dispatcher and skeleton

18

 RMI 35

Distributed Garbage Collection
  Java approach based on reference counting

  Each server process maintains a list of remote processes that
hold remote object references for its remote objects

  When a client first acquires a remote reference to an object, it
makes an addRef() invocation to server before creating a proxy

  When a clients local garbage collector notices that a proxy is no
longer reachable, it makes a removeRef() invocation to the
server before deleting the proxy

  When the local garbage collector on the server notices that the
list of client processes that have a remote reference to an
object is empty, it will delete the object (unless there are any
local objects that have a reference to the object)

  Other approaches
  “Evictor” pattern
  Leases

