
1

 RMI 1

Remote Method Invocation –
Design & Implementation

CS 475

 RMI 2

Middleware layers

Applications, services

Middleware
layers

request-reply protocol
marshalling and external data representation

UDP and TCP

RMI and RPC

2

 RMI 3

Distributed Objects

  Common organization of a remote object with client-side
proxy.

2-16

 RMI 4

Compile-time vs run-time objects
  Objects can be implemented in many different

ways
  compile-time objects, i.e. instances of classes written in

object-oriented languages like Java, C++
  database objects
  procedural languages like C, with a appropriate “wrapper

code” that gives it the appearance of an object
  Systems like Java RMI support compile-time

objects
  Not possible or difficult in language-independent

RMI middleware such as CORBA
  these systems use object adapters
  implementations of object interfaces are registered at an

object adapter, which acts as an intermediary between
the client and object implementation

3

 RMI 5

Persistent vs transient objects

  Persistent objects continue to exist even if they
are not contained in the address space of a server
process

  The “state” of a persistent object has to be stored
on a persistent store, i.e., secondary storage

  Invocation requests result in an instance of the
object being created in the address space of a
running process
  many policies possible for object instantiation and (de)

instantiation
  Transient objects only exist as long as their

container server processes are running

 RMI 6

Static vs dynamic remote method invocations

  Typical way for writing code that uses RMI is similar
to the process for writing RPC
  declare the interface in IDL, compile the IDL file to generate

client and server stubs, link them with client and server side
code to generate the client and the server executables

  referred to as static invocation
  requires the object interface to be known when the client is

being developed
  Dynamic invocation

  the method invocation is composed at run-time
invoke(object, method, input_parameters, output_parameters)

  useful for applications where object interfaces are discovered
at run-time, e.g. object browser, batch processing systems for
object invocations, “agents”

4

 RMI 7

Design Issues for RMI
  RMI Invocation Semantics

  Invocation semantics depend upon implementation of Request-
Reply protocol used by RMI

  Maybe, At-least-once, At-most-once
  Transparency

  Should remote invocations be transparent to the programmer?
•  Partial failure, higher latency
•  Different semantics for remote objects, e.g. difficult to implement

“cloning” in the same way for local and remote objects or to support
synchronization operations, e.g. wait/notify

  Current consensus: remote invocations should be made
transparent in the sense that syntax of a remote invocation is
the same as the syntax of local invocation (access transparency)
but programmers should be able to distinguish between remote
and local objects by looking at their interfaces, e.g. in Java RMI,
remote objects implement the Remote interface

 RMI 8

Issues in implementing RMI

  Parameter Passing
  Request-Reply Protocol

 Handling failures at client and/or server
 Supporting persistent objects, object

adapters, dynamic invocations, etc.

5

 RMI 9

Request-reply communication

Request

Server Client

doOperation

(wait)

(continuation)
Reply
message

getRequest

execute
method

message
select object

sendReply

 RMI 10

Operations of the request-reply
protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)	

sends a request message to the remote object and returns the reply. 	

The arguments specify the remote object, the method to be invoked and the
arguments of that method.	

public byte[] getRequest ();	

acquires a client request via the server port.	

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 	

sends the reply message reply to the client at its Internet address and port.	

6

 RMI 11

Request-reply message structure

messageType	

requestId	

objectReference	

methodId	

arguments	

int (0=Request, 1= Reply)	

int	

RemoteObjectRef	

int or Method	

array of bytes	

 RMI 12

Representation of a remote object
reference

Internet address	

 port number	

 time	

 object number	

 interface of 	

remote object	

32 bits	

 32 bits	

 32 bits	

 32 bits	

7

 RMI 13

CORBA interoperable object
references

IOR format	

IDL interface type name	

Protocol and address details	

 Object key	

interface repository	

identifier	

IIOP	

 host domain	

name	

 port number	

 adapter name	

 object name	

 RMI 14

Request-Reply protocol

  Issues in marshaling of parameters and results
  Input, output, Inout parameters
  Data representation
  Handling reference parameters

  Distributed object references
  Handling failures in request-reply protocol

  Partial failure
•  Client, Server, Network

8

 RMI 15

Marshalling

  Pack method arguments and results into a
flat array of bytes

 Use a canonical representation of data
types, e.g. integers, characters, doubles

  Examples
 SUN XDR
 CORBA CDR
 Java serialization

 RMI 16

Parameter Passing: local vs remote objects

  The situation when passing an object by reference or by
value.

2-18

Remote object references are passed by reference where local object
references are passed by value

9

 RMI 17

CORBA CDR for constructed types

T	

y	

p	

e	

 Re	

pr	

e	

s	

e	

n	

ta	

t	

i	

o	

n	

s	

e	

q	

ue	

n	

ce	

 l	

e	

n	

g	

th	

(

u	

n	

si	

g	

n	

ed	

l	

o	

n	

g	

) 	

fo	

ll	

ow	

ed 	

b	

y	

el	

e	

m	

e	

nt	

s	

i	

n 	

o	

r	

d	

e	

r	

s	

t	

ri	

n	

g	

 l	

e	

n	

g	

th	

(

u	

n	

si	

g	

n	

ed	

l	

o	

n	

g	

) 	

fo	

ll	

ow	

ed 	

b	

y	

ch	

a	

ra	

c	

te	

rs 	

i	

n o	

r	

d	

e	

r	

(

ca	

n	

 al	

so	

ca	

n	

h	

av	

e 	

w	

i	

de	

ch	

a	

ra	

c	

te	

rs)	

a	

r	

ra	

y	

 a	

rr	

ay 	

e	

le	

m	

e	

n	

t	

s i	

n	

o	

r	

de	

r (

n	

o l	

en	

g	

t	

h s	

p	

e	

ci	

f	

ie	

d b	

eca	

us	

e 	

i	

t 	

is 	

f	

i	

x	

e	

d	

)	

s	

t	

ru	

ct	

 i	

n t	

he 	

or	

de	

r o	

f	

de	

c	

la	

r	

at	

i	

o	

n o	

f 	

t	

he	

co	

mp	

o	

n	

e	

n	

t	

s	

e	

n	

u	

m	

e	

r	

a	

t	

e	

d	

 u	

n	

s	

i	

g	

n	

e	

d	

l	

o	

n	

g 	

(

t	

h	

e 	

v	

a	

l	

ue	

s a	

re	

 s	

pe	

c	

i	

f	

ie	

d 	

b	

y t	

he	

o	

r	

de	

r d	

ec	

l	

ar	

e	

d	

)	

u	

ni	

o	

n	

 t	

y	

p	

e 	

ta	

g f	

o	

l	

l	

o	

we	

d b	

y 	

t	

h	

e s	

el	

e	

cte	

d m	

e	

mb	

er	

 RMI 18

CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3	

4–7	

8–11	

12–15	

16–19	

20-23	

24–27	

5	

"Smit"	

"h___"	

 6	

"Lond"	

"on__"	

1934	

index in 	

sequence of bytes	

 4 bytes	

notes 	

on representation	

length of string	

‘Smith’	

length of string	

‘London’	

unsigned long	

10

 RMI 19

Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values	

Person	

3	

1934	

 8-byte version number	

int year	

5 Smith	

java.lang.String	

name:	

6 London	

h0	

java.lang.String	

place:	

h1	

Explanation	

class name, version number	

number, type and name of 	

instance variables 	

values of instance variables	

 RMI 20

RPC exchange protocols

N	

a	

m	

e	

 M	

es	

sag	

es 	

s	

e	

nt b	

y	

C	

li	

e	

nt	

 S	

e	

r	

ve	

r	

 C	

li	

e	

nt	

R	

 R	

e	

qu	

es	

t	

R	

R	

 R	

e	

qu	

es	

t	

 R	

e	

pl	

y	

R	

R	

A	

 R	

e	

qu	

es	

t	

 R	

e	

pl	

y	

 A	

ck	

no	

w	

ledg	

e re	

ply	

11

 RMI 21

Handling failures

 Types of failure
 Client unable to locate server
 Request message lost
 Reply message lost
 Server crashes after receiving a request
 Client crashes after sending a request

 RMI 22

Handling failures

  Client cannot locate server
 Reasons

•  Server has crashed
•  Server has moved
•  (RPC systems) client compiled using old version of

service interface
 System must report error (remote exception)

to client
•  Loss of transparency

12

 RMI 23

Handling failures

  Lost request message
 Retransmit a fixed number of times before

throwing an exception
  Lost reply message

 Client resubmits request
 Server choices

•  Re-execute procedure  service should be
idempotent so that it can be repeated safely

•  Filter duplicates  server should hold on to results
until acknowledged

 RMI 24

Invocation semantics

Fault tolerance measures	

 Invocation 	

semantics	

Retransmit request 	

message	

Duplicate 	

filtering	

Re-execute procedure 	

or retransmit reply	

No	

Yes	

Yes	

Not applicable	

No	

Yes	

Not applicable	

Re-execute procedure	

Retransmit reply	

 At-most-once	

At-least-once	

Maybe	

13

 RMI 25

Handling failures

 Server crashes

Recv
Exec
Reply

Recv
Exec
Crash

Recv
Crash

REQ

REP

REQ REQ

NO
REP

NO
REP

Client cannot tell difference

 RMI 26

Handling failures

  Server crashes
  At least once (keep trying till server comes up again)
  At most once (return immediately)
  Exactly once impossible to achieve

  SUN RPC
  At least once semantics on successful call and maybe

semantics if unsuccessful call
  CORBA, Java RMI

  at most once semantics

14

 RMI 27

Handling failures

  Implementing the request-reply protocol on
top of TCP
 Does it provide applications with different

invocation semantics?
•  NO!

–  TCP does not help with server crashes
–  If a connection is broken, the end pts do not have any

guarantees about the delivery of messages that may have
been in transit

 RMI 28

Handling failures

  Client crashes
  If client crashes before RPC returns, we have

an “orphan” computation at server
•  Wastes resources, could also start other

computations
 Orphan detection

•  Reincarnation (client broadcasts new “epoch” when it
comes up again)

•  Expiration (RPC has fixed amount of time T to do
work)

15

 RMI 29

RMI Software Components

object A	

 object B	

skeleton	

Request	

proxy for B	

Reply	

Communication	

Remote 	

 Remote reference	

Communication	

 module	

 module	

reference module	

 module	

for B’s class	

& dispatcher	

remote	

client	

 server	

 RMI 30

RMI Software Components

  Communication module
  Implements the request-reply protocol

  Remote reference module
 Responsible for translating between local and

remote object references and for creating
remote object references

•  Maintains remote object table that maintains a
mapping between local & remote object references

•  E.g. Object Adaptor in CORBA

16

 RMI 31

RMI – Object Activation

 Activation of remote objects
 Some applications require that information

survive for long periods of times
 However, objects not in use all the time, so

keeping them in running processes is a potential
waste of resources

  Object can be activated on demand
•  E.g. standard TCP services such as FTP on UNIX

machines are activated by inetd

 RMI 32

Object Activation
  Active and passive objects

  Active object = instantiated in a running process
  Passive object = not currently active but can be made

active
•  Implementation of its methods, and marshalled state stored

on disk
  Activator responsible for

  Registering passive objects that are available for activation
  Starting named server processes and activating remote

objects in them
  Keeping track of locations of servers for remote objects

that it has already activated
  Examples: CORBA implementation repository, JAVA

RMI has one activator on each server computer

17

 RMI 33

RMI – Other topics

  Persistent object stores
  An object that is guaranteed to live between activations of

processes is called a persistent object
  Stores the state of an object in a marshalled (serialized)

form on disk
  Location service

  Objects can migrate from one system to another during
their lifetime

  Maintains mapping between object references and the
location of an object

 RMI 34

RMI – Other topics
  Distributed Garbage Collection

  Needed for reclaiming space on servers
  Passing “behavior”

  Java allows objects (data + code) to be passed by value
•  If the class for an object passed by value is not present in a

JVM, its code is downloaded automatically
  See Java RMI tutorial example

  Use of Reflection in Java RMI
  Allows construction of generic dispatcher and skeleton

18

 RMI 35

Distributed Garbage Collection
  Java approach based on reference counting

  Each server process maintains a list of remote processes that
hold remote object references for its remote objects

  When a client first acquires a remote reference to an object, it
makes an addRef() invocation to server before creating a proxy

  When a clients local garbage collector notices that a proxy is no
longer reachable, it makes a removeRef() invocation to the
server before deleting the proxy

  When the local garbage collector on the server notices that the
list of client processes that have a remote reference to an
object is empty, it will delete the object (unless there are any
local objects that have a reference to the object)

  Other approaches
  “Evictor” pattern
  Leases

