Concurrent Servers

CS 475

Echo Server Operation

Client Server

open_clientfd !

Connection

rio _writen

rio_readlineb

Client/

Server |:|
Session
-2

open_listenfd

Await connection
request from
next client

CS 475

Page 1

Ilterative Servers

Iterative servers process one request at a time

client 1 server client 2
call connect call acceRE call connect
ret connect eI et
call write ret accept
read
ret write
close
close
call accept
ret connect
ret accept call write
read
ret write
close
close
-3- CS 475

Fundamental Flaw of lterative Servers

client 1 server client 2
call accept
call connect [
ret connect [¢
ret accept
call fgets
Server blocks call read . call connect
User goes waiting for JR
out to lunch g‘it:nf[r?m Client 2 blocks
. waiting to complete
Clleljt 1 blocks its connection
waiting for user request until after
to type in data lunch!

Solution: use concurrent servers instead

m Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time
—4— CS 475

Page 2

Concurrent Servers (approach #1):
Multiple Processes

Concurrent servers handle multiple requests concurrently

client 1 server client 2
call accept = e
call connect [i p _______________________ call connect
ret connect [CIIIIIITII e
ret accept
call fgets h1g;L,,/’ fork
cni or
call read .Si}inffffpt
User goes s aes] Tet connect
PRSI
out to lunch ret accept call fgets
Client 1 fork child 2 write
blocks call read
waiting for
user to type
in data
end read
close
—-5- CS 475

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes
m Kernel automatically interleaves multiple logical flows
m Each flow has its own private address space

2. Threads
m Kernel automatically interleaves multiple logical flows
m Each flow shares the same address space

3. /0 multiplexing with select ()
= Programmer manually interleaves multiple logical flows
m All flows share the same address space
m Popular for high-performance server designs

—6— CS 475

Page 3

Review: Sequential Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[1l]);
struct sockaddr in clientaddr;
int clientlen = sizeof (clientaddr) ;

listenfd = Open_ listenfd(port) ;
while (1) {
connfd = Accept(listenfd, (SA *)é&clientaddr, &clientlen);
echo (connfd) ;
Close (connfd) ;
}
exit(0);

m Accept a connection request
= Handle echo requests until client terminates

-7~ CS 475

Process-Based Concurrent Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[l]);
struct sockaddr_in clientaddr;
int clientlen=sizeof (clientaddr) ;

client

Does not allow any
communication between
different client handlers

Signal (SIGCHLD, sigchld handler);
listenfd = Open_listenfd(port) ;
while (1) {

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
Close (listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Fork separate process for each

Close (connfd) ; /* Parent closes connected socket (important!) */

—_8-— CS 475

Page 4

Process-Based Concurrent Server

(cont)

{

;
return;

void sigchld _handler (int sig)

while (waitpid(-1, 0, WNOHANG) > 0)

m Reap all zombie children

CS 475

Process Execution Model

Connection Requests

Client 1 data

——

Client 1
Server
Process

Listening
Server
Process

Client 2
Server
Process

Client 2 data

—

m Each client handled by independent process
m No shared state between them

= When child created, each have copies of listenfd and connfd
o Parent must close connfd, child must close listenfd

—~10-

CS 475

Page 5

Implementation Must-dos With
Process-Based Designs

Listening server process must reap zombie children
= to avoid fatal memory leak

Listening server process must close its copy of connfd
m Kernel keeps reference for each socket/open file
m After fork, refent (connfd) = 2
m Connection will not be closed until refent (connfd) ==

-1 - CS 475

Pros and Cons of Process-Based
Designs

+ Handle multiple connections concurrently

+ Clean sharing model
m descriptors (no)
n file tables (yes)
= global variables (no)

+ Simple and straightforward
- Additional overhead for process control

- Nontrivial to share data between processes

m Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores

-12- CS 475

Page 6

Approach #2: Multiple Threads

Very similar to approach #1 (multiple processes)
= but, with threads instead of processes

-13- CS 475

A Process With Multiple Threads

Multiple threads can be associated with a process
m Each thread has its own logical control flow

m Each thread shares the same code, data, and kernel context
® Share common virtual address space (inc. stacks)

m Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes Condition codes
SP1 0 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table

brk pointer
CS 475

— 14—

Page 7

Thread-Based Concurrent Echo
Server

int main(int argc, char **argv)

{
int port = atoi(argv[1l]);
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread t tid;

int listenfd = Open_listenfd(port) ;

while (1) {
int *connfdp = Malloc(sizeof (int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, connfdp);

m Spawn new thread for each client
m Pass it copy of connection file descriptor

= Note use of Malloc()!
o Without corresponding Free() CS 475

Thread-Based Concurrent Server
(cont)

/* thread routine */

void *echo_thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach (pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

}

= Run thread in “detached” mode
® Runs independently of other threads
® Reaped when it terminates

= Free storage allocated to hold clientfd
® “Producer-Consumer” model

-16 - CS 475

Page 8

Process Execution Model

Connection Requests

Listening
Server
Thread
Client 1 Client 2
Client 1 data | garyer Server [Client 2 data
Thread Thread

m Multiple threads within single process

= Some state between them
o File descriptors (in this example; usually more)

-17 - CS 475

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, (void *) &connfd);

connfd = connfd,

Main thread stack

connfd = connfd, —>]CO“"fd =*vargp

_I Peer, stack
connfd = *vargp l m

—18-— Why would both copies of vargp point to same location? CS 475

Page 9

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak
m At any point in time, a thread is either joinable or detached

m Joinable thread can be reaped and killed by other threads
® must be reaped (with pthread join) to free memory resources
m Detached thread cannot be reaped or killed by other threads
® resources are automatically reaped on termination

m Default state is joinable
® use pthread detach (pthread self ()) to make detached

Must be careful to avoid unintended sharing.

m For example, what happens if we pass the address of connfd

to the thread routine?
® Pthread create(&tid, NULL, thread, (void
*) &connfd) ;

All functions called by a thread must be thread-safe

-19- CS 475

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
m e.g., logging information, file cache

+ Threads are more efficient than processes

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

m The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

—-20 - CS 475

Page 10

Appr. #3: Event-Based Concurrent
Servers Using I/O Multiplexing

Maintain a pool of connected descriptors

Repeat the following forever:

m Use the Unix select function to block until:
@ (a) New connection request arrives on the listening descriptor
o (b) New data arrives on an existing connected descriptor

m If (a), add the new connection to the pool of connections

m If (b), read any available data from the connection
® Close connection on EOF and remove it from the pool

-21- CS 475

The select Function

select () sleeps until one or more file descriptors in the set readset
are ready for reading

#include <sys/select.h>

int select(int maxfdpl, fd set *readset, NULL, NULL, NULL);

readset
« Opague bit vector (max FD_SETSIZE bits) that indicates membership in
a descriptor set
« If bit k is 1, then descriptor k is a member of the descriptor set

maxfdpl
» Maximum descriptor in descriptor set plus 1
« Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership

select () returns the number of ready descriptors and sets each bit of
readset to indicate the ready status of its corresponding descriptor

-22- CS 475

Page 11

Macros for Manipulating Set

Descriptors

void FD_ZERO (fd_set *fdset);
= Turn off all bits in fdset

void FD_SET(int fd, fd_set *fdset);
m Turn on bit £d in fdset

void FD_CLR(int fd, fd_set *fdset);
m Turn off bit £4 in £dset

int FD_ISSET (int fd, *fdset);
m Is bit £4 in £dset turned on?

— 23—

CS 475

Overall Structure

listenfd .
Manage Pool of Connections
clientfd m listenfd: Listen for requests
0 10 from new clients
1 }etive = Active clients: Ones with a
9 valid connection
3 A } . Use select to detect activity
Inactive
41 - = New request on listenfd
5 12 . .
) - } Active m Request by active client
7 5 Required Activities
8 1 m Adding new clients
Cl — } Never Used = Removing terminated clients

m Echoing

— 24—

CS 475

Page 12

Representing Pool of Clients

/*
Y
#include "csapp.h"

int maxfd;

int nready;
int maxi;

} pool;

fd set read_set;
fd set ready_set; /* subset of descriptors ready for reading

* echoservers.c - A concurrent echo server based on select

typedef struct { /* represents a pool of connected descriptors */

/* largest descriptor in read_set */
/* set of all active descriptors */

=4

/* number of ready descriptors from select */

/* highwater index into client array */

int clientfd[FD_SETSIZE]; /* set of active descriptors */
rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */

int byte_cnt = 0; /* counts total bytes received by server */

— 25—

CS 475

Pool Example

listenfd =3

clientfd

10
7
4
-1
-1
12
5
-1
-1
-1

© 00 N O g & WO N = O

— 26—

= maxfd =12
= maxi =6
m read_set={3,4,5,7,10,12}

}etive

} Inactive

} Active

} Never Used

CS 475

Page 13

Main Loop

int main(int argc, char **argv)

{
int listenfd, connfd, clientlen = sizeof (struct sockaddr_ in);
struct sockaddr_in clientaddr;
static pool pool;

listenfd = Open_listenfd(argv[1l]);
init pool(listenfd, &pool);

while (1) {
pool.ready set = pool.read_set;
pool.nready = Select(pool.maxfd+l, &pool.ready_set,
NULL, NULL, NULL) ;

if (FD_ISSET(listenfd, &pool.ready set)) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
add _client(connfd, &pool);

}

check_clients (&pool) ;

-27 - CS 475

Pool Initialization

/* initialize the descriptor pool */
void init pool (int listenfd, pool *p)
{
/* Initially, there are no connected descriptors */
int i;
p->maxi = -1;
for (i=0; i< FD_SETSIZE; i++)
p->clientfd[i] = -1;
/* Initially, listenfd is only member of select read set */
p->maxfd = listenfd;
FD_ZERO (&p->read_set) ;
FD_SET (listenfd, &p->read set);
}
-28— CS 475

Page 14

Initial Pool

listenfd =3

clientfd

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

© 00 N O g & @O N = O

—29 —

} Never Used

= maxfd =3
= maxi = -1
m read_set={3}

CS 475

Main Loop

{

static pool pool

while (1) {

}

int listenfd, connfd,
struct sockaddr_ in clientaddr;

int main(int argc, char **argv)

’

clientlen = sizeof (struct sockaddr_in);

listenfd = Open_ listenfd(argv[l]);
init pool (listenfd, &pool);

pool.ready set = pool.read_set;
pool.nready = Select(pool.maxfd+l, &pool.ready_set,

NULL, NULL, NULL);

check clients (&pool) ;

if (FD_ISSET (listenfd, &pool.ready set)) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen) ;
add_client (connfd, &pool) ;

—-30 -

CS 475

Page 15

Adding Client

void add client(int connfd, pool *p) /* add connfd to pool p */
{

int i;

p->nready--;

for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
if (p->clientfd[i] < 0) {
p->clientfd[i] = connfd;
Rio_readinitb (&p->clientrio[i], connfd);

FD_SET (connfd, &p->read set); /* Add desc to read set */

if (connfd > p->maxfd) /* Update max descriptor num */
p->maxfd = connfd;
if (i > p->maxi) /* Update pool high water mark */
p->maxi = i;
break;
}
if (i == FD_SETSIZE) /* Couldn't find an empty slot */
app_error ("add client error: Too many clients");

Adding Client with fd 11

listenfd =3
= maxfd =12

clientfd = maxi=6

10 m read_set={3,4,5,7,10,11,12}
7 }etive

4

1

-1

12

5

-1

-1

-1 } Never Used

} Inactive

} Active

© 00 N O g & WO N = O

32— CS 475

Page 16

Checking Clients

void check_clients(pool *p) { /* echo line from ready descs in pool p */
int i, connfd, n;
char buf[MAXLINE] ;
rio_t rio;

for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
connfd = p->clientfd[i];
rio = p->clientrio[i];

/* If the descriptor is ready, echo a text line from it */
if ((connfd > 0) && (FD_ISSET(connfd, &p->ready set))) ({
p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
byte cnt += n;
Rio_writen(connfd, buf, n);
}
else {/* EOF detected, remove descriptor from pool */
Close (connfd) ;
FD_CLR(connfd, &p->read set);
p->clientfd[i] = -1;

Concurrency Limitations

if ((connfd > 0) && (FD_ISSET(connfd, &p->ready set))) ({
p->nready-=-;
if ((n =|Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {

byte_cnt += n;
Rio_writen(connfd, buf, n);

Does not return until
complete line received

m Current design will gets stuck if partial line transmitted
= Bad to have network code that can get stuck if client does
something weird
® By mistake or maliciously
= Would require more work to implement more robust version
® Must allow each read to return only part of line, and reassemble
lines within server

—34— CS 475

Page 17

Pro and Cons of Event-Based Designs

+ One logical control flow
+ Can single-step with a debugger

+ No process or thread control overhead

m Design of choice for high-performance Web servers and
search engines

- Significantly more complex to code than process- or
thread-based designs

- Hard to provide fine-grained concurrency
m E.g., our example will hang up with partial lines

_35— CS 475

Approaches to Concurrency

Processes
m Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients

Threads
m Easy to share resources: Perhaps too easy
m Medium overhead
m Not much control over scheduling policies
m Difficult to debug
o Event orderings not repeatable
I/O Multiplexing
m Tedious and low level
m Total control over scheduling
m Very low overhead
m Cannot create as fine grained a level of concurrency

-36— CS 475

Page 18

