Network Programming with
Sockets

CS 475

Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 208.216.181.15:
Server
Connection socket pair (port 80)
(128.2.194.242:51213, 208.216.181.15:80)
Client host address Server host address
128.2.194.242 208.216.181.15

Page 1

Sockets

What is a socket?
m To the kernel, a socket is an endpoint of communication.
= To an application, a socket is a file descriptor that lets the
application read/write from/to the network.
® Remember: All Unix I/O devices, including networks, are
modeled as files.

Clients and servers communicate with each other by
reading from and writing to socket descriptors.

The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket
descriptors.

Overview of the Sockets Interface

Client Server

open_listenfd
open_clientfd
Connection

v v

I rio _writen -rio_readlinebl
_

rio_readlineb

Client/ i i
Server Await connection
Session request from

next client

Page 2

Socket Address Structures

Generic socket address:
m For address arguments to connect, bind, and accept.

m Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

struct sockaddr {
unsigned short sa_ family; /* protocol family */
char sa_data[1l4]; /* address data. */
}i

sa_family

——
Family Specific

Socket Address Structures

Internet-specific socket address:

m Must cast (sockaddr_in *)to (sockaddr *)for connect,
bind, and accept.

struct sockaddr_in {
unsigned short sin family; /* address family (always AF_INET) */
unsigned short sin port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof (struct sockaddr) */

sin_port sin_addr
AF_INET 0 0 0 0 0 0 0 0
sin_family™—— —— —

Family Specific

Page 3

Example: Echo Client and Server

On Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789

On Client

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789

Echo from server: 456789
kittyhawk>

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
int clientfd, port;
char *host, buf[MAXLINE];
rio_t rio;
host = argv[l]; port = atoi(argv[2]);
clientfd = Open_clientfd (host, port);
Rio_readinitb(&rio, clientfd);
Send line to printf ("type:"); fflush(stdout);
server p— while (Fgets(buf, MAXLINE, stdin) != NULL) {
i . Rio_writen(clientfd, buf, strlen(buf));
Receive Ime__, Rio_readlineb (&rio, buf, MAXLINE) ;
from server printf ("echo:") ;
Fputs (buf, stdout);
printf ("type:"); fflush(stdout)
}
Close (clientfd) ;
exit(0) ;

Page 4

open_clientfd

Overview of the Sockets Interface

Client Server

Connection

connect accept

open_listenfd

Echo Client: open clientfd

int open_clientfd(char *hostname, int port) {

int clientfd; This function opens a
struct hostent *hp; connection from the client to
struct sockaddr in serveraddr; the server at hostname:port
if ((clientfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) Create
return -1; /* check errno for cause of error */ socket
/* Fill in the server's IP address and port */ ~
if ((hp = gethostbyname (hostname)) == NULL)
return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin_ family = AF_INET; Create
becopy ((char *)hp->h_addr_ 1list[0], address
(char *)&serveraddr.sin addr.s_addr, hp->h length);
serveraddr.sin _port = htons (port) ;
7
/* Establish a connection with the server */ M
if (connect(clientfd, (SA *) &serveraddr, .
sizeof (serveraddr)) < 0) EStab"sP
D =ilg connection
return clientfd; _J
}

Page 5

Echo Client: open clientfd
(socket)

socket creates a socket descriptor on the client

m Just allocates & initializes some internal data structures
m AF INET: indicates that the socket is associated with Internet

protocols.

m SOCK STREAM: selects a reliable byte stream connection

e Provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

(more)

—11 -

Echo Client: open clientfd
(gethostbyname)

The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF_ INET;
serveraddr.sin_port = htons(port);
beopy ((char *)hp->h_addr_list[O0],

(char *)é&serveraddr.sin_addr.s_addr, hp->h_length);

—-12 —

Check this out!

Page 6

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h _length; /* length of an address, in bytes */
char **h addr list; /* null-terminated array of in_addr structs */

}i

struct sockaddr_in {

struct in _addr sin_addr; /* IP addr in network byte order */

};' " | /* Internet address structure */
struct in_addr {
unsigned int s_addr; /* network byte order (big-endian) */

}:

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

bcopy ((char *)hp->h _addr 1list[0], /* src, dest */
(char *)&serveraddr.sin _addr.s_addr, hp->h length);

—13 -

Echo Client: open clientfd
(connect)

Finally the client creates a connection with the server.
= Client process suspends (blocks) until the connection is created.

m After resuming, the client is ready to begin exchanging messages
with the server via Unix I/O calls on descriptor clientfd.

int clientfd; /* socket descriptor */
struct sockaddr_ in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

if (connect(clientfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

return clientfd;

— 14—

Page 7

Echo Server: Main Routine

int main(int argc, char **argv) {

int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;

struct hostent *hp;

char *haddrp;

port = atoi(argv([l]); /* the server listens on a port passed
on the command line */

listenfd = open_ listenfd(port);

while (1) {

clientlen = sizeof(clientaddr) ;

connfd = Accept(listenfd, (SA *)é&clientaddr, &clientlen);

hp = Gethostbyaddr ((const char *)é&clientaddr.sin_addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET) ;

haddrp = inet_ntoa(clientaddr.sin_addr) ;

printf ("server connected to %s (%s)\n", hp->h name, haddrp) ;

echo (connfd) ;

Close (connfd) ;

—15—

Overview of the Sockets Interface

open_c

—~ 16—

Client Server

open_listenfd
lientfd
Connection

connect accept

Page 8

Echo Server: open listenfd

int open listenfd(int port)
{
int listenfd, optval=l;
struct sockaddr_ in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

(more)

—17 —

Echo Server: open listenfd (cont)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof (serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin _addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < O0)
return -1;

return listenfd;

—~18-—

Page 9

Echo Server: open listenfd
(socket)

socket creates a socket descriptor on the server.

m AF_INET: indicates that the socket is associated with Internet
protocols.

m SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

—19 —

Echo Server: open listenfd
(setsockopt)

The socket can be given some attributes.

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL SOCKET, SO_REUSEADDR,
(const void *) &optval , sizeof (int)) < 0)
return -1;

Handy trick that allows us to rerun the server
immediately after we kill it.

= Otherwise we would have to wait about 15 secs.
= Eliminates “Address already in use” error from bind () .

Strongly suggest you do this for all your servers to
simplify debugging.

—20—

Page 10

Echo Server: open listenfd
(initialize socket address)

Initialize socket with server port number
accept connection from any IP address

struct sockaddr_ in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin family = AF INET;

serveraddr.sin _port = htons((unsigned short)port);

serveraddr.sin_addr.s_addr = htonl (INADDR ANY) ;

sin_port sin_addr

AF_INET mmnln_mu olo]Jo|lo|lofofo]o

sin_family
IP addr and port stored in network (big-endian) byte order

—21—

Echo Server: open listenfd
(bind)

bind associates the socket with the socket address we
just created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

—22 —

Page 11

Echo Server: open listenfd
(listen)
listen indicates that this socket will accept
connection (connect) requests from clients

LISTENQ is constant indicating how many pending
requests allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

We’'re finally ready to enter the main server loop that
accepts and processes client connection requests.

— 23—

Echo Server: Main Loop

The server loops endlessly, waiting for connection
requests, then reading input from the client, and
echoing the input back to the client.

main () {

/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

24—

Page 12

Overview of the Sockets Interface

Client Server

open_listenfd
open_clientfd

Connection
connect accept

v v

Client/)]
Server Await connection
Session request from

rio_readlineb next client

— 25—

Echo Server: accept

accept () blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(listenfd)

= Returns when the connection between client and server is
created and ready for I/O transfers.

m All I/0 with the client will be done via the connected socket.

accept also fills in client’s IP address.
— 26—

Page 13

Echo Server: accept lllustrated

listenfd(3) 1. Server blocks in accept,
. Q = waiting for connection
Client erver request on listening
clientfd descriptor 1istenfd.
C?:"e:ts'?" listenfd(3)
equest . +Ol 2. Client makes connection
Client Server request by calling and blocking in
clientfd connect.
listen£d(3) 3. Server returns connfd from

accept. Client returns from
Client L j Server connect. Connection is now
established between clientfd
and connfd.

clientfd connfd (4)

- 27 —

Connected vs. Listening Descriptors

Listening descriptor
m End point for client connection requests.
m Created once and exists for lifetime of the server.

Connected descriptor
= End point of the connection between client and server.

m A new descriptor is created each time the server accepts a
connection request from a client.

m Exists only as long as it takes to service client.

Why the distinction?

m Allows for concurrent servers that can communicate over
many client connections simultaneously.
e E.g., Each time we receive a new request, we fork a child to
handle the request.

_ 28—

Page 14

Echo Server: Identifying the Client

The server can determine the domain name and IP
address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */

hp = Gethostbyaddr ((const char *)&clientaddr.sin_addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr) ;

printf ("server connected to %s (%s)\n", hp->h_name, haddrp) ;

—_29—

Echo Server: echo

The server uses RIO to read and echo text lines until
EOF (end-of-file) is encountered.
m EOF notification caused by client calling
close(clientfd) .
= IMPORTANT: EOF is a condition, not a particular data byte.

void echo (int connfd)
{
size_t n;
char buf [MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) ({
upper_case (buf) ;
Rio_writen(connfd, buf, n);
printf ("server received %d bytes\n", n);

Page 15

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in apps,
such as network programs that are subject to short counts

RIO provides two different kinds of functions
= Unbuffered input and output of binary data
® rio_readnand rio_writen
m Buffered input of binary data and text lines
® rio_readlineb and rio_readnb

e Buffered RIO routines are thread-safe and can be interleaved arbitrarily on
the same descriptor

Included in file csapp.c, csapp.h provided with
Assignment 3

—31-—

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio_readn(int fd, void *usrbuf, size t n);
ssize_t rio_writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

m rio_readn returns short count only it encounters EOF.
@ Only use it when you know how many bytes to read

m rio_writen never returns a short count.
m Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

—_32_

Page 16

RIO Example

Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb (&rio, STDIN_FILENO) ;

while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0)
Rio_writen (STDOUT_FILENO, buf, n);
exit (0) ;

— 33—

Standard I/O: Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position

char buf[512];

int £4; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1l);

Returns number of bytes read from file £d into buf
= Return type ssize_t is signed integer
m nbytes < 0 indicates that an error occurred.

m short counts (nbytes < sizeof (buf)) are possible and
34 arenot errors!

Page 17

Motivation for RIO: Dealing with Short
Counts

Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
m Reading text lines from a terminal
m Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
= Reading from disk files (except for EOF)
m Writing to disk files

One way to deal with short counts in your code:
m Use the RIO (Robust I/0) package

—_35—

Testing Servers Using telnet

The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
= Our simple echo server
m Web servers
m Mail servers

Usage:
® unix> telnet <host> <portnumber>

m Creates a connection with a server running on <host>and
listening on port <portnumber>.

- 36—

Page 18

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '~]'.

123

123

Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '~]'.

456789

456789

Connection closed by foreign host.
kittyhawk>

—37 -

For More Information

W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1,
Second Edition, Prentice Hall, 1998.

m THE network programming bible.

Unix Man Pages
m Good for detailed information about specific functions

Complete versions of the echo client and server are
developed in the CS 367 text (Bryant & O’Halloran)
m Available from csapp.cs.cmu.edu

= You should compile and run them for yourselves to see how
they work.

= Feel free to borrow any of this code.

- 38—

Page 19

