Ch 5: Designing a Single Cycle Datapath
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CS 365

The Biqg Picture: Where are We Now?

* The Five Classic Components of a Computer
Processor
Input
Control
Memor
Datapathi Output

e Today’s Topic: Design a Single Cycle Processor
| y

machine
design Arithmetic (Ch 4)

inst. set design (Ch 3)  technology




The Biq Picture: The Performance Perspective

CPI
» Performance of a machine is determined by:
— Instruction count
— Clock cycle time Inst. Count Cycle Time

— Clock cycles per instruction
* Processor design (datapath and control) will determine:
— Clock cycle time
— Clock cycles per instruction
* Today:
— Single cycle processor:
» Advantage: One clock cycle per instruction
» Disadvantage: long cycle time

How to Design a Processor: step-by-step

1. Analyze instruction set => datapath requirements
— the meaning of each instruction is given by the register transfers
— datapath must include storage element for ISA registers
 possibly more
— datapath must support each register transfer
2. Select set of datapath components and establish clocking methodology
3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction to determine setting of control
points that effects the register transfer.

5. Assemble the control logic




The MIPS Instruction Formats

< All MIPS instructions are 32 bits long. The three instruction formats:

31 26 21 16 11 6 0
— R-type [ op [ s | rt [ rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16 0
- I-type [ op | s | rt | immediate |
6 bits 5 bits 5 bits 16 bits
— J-type 31 26 0
[ oo | tar get address |
6 bits 26 bits
e The different fields are:
— op: operation of the instruction
— rs, rt, rd: the source and destination register specifiers
— shamt: shift amount
— funct: selects the variant of the operation in the “op” field
— address / immediate: address offset or immediate value
— target address: target address of the jump instruction
Step la: The MIPS-lite Subset
31 26 21 16 11 6 0
ADD, SUB, AND, OR [ op | rs [ rt | rd | shamt | funct |
— addrd, rs, 1t 6bits  5bits  5bits  5hits  5hits  6bits
— subrd, rs, rt
— andrd, rs,rt
— orrd,rs,t 31 26 21 16
LOADand STOREWord | op | rs | rt | immediate
— lwrt, rs, imm16 6 bits 5 bits 5 bits 16 bits
— swrt, rs, imm16
BRANCH: 31 26 21 16 0
— beqrs,rt,imm16 [ op [ rs [ rt | immediate |
6 bits 5 bits 5 bits 16 hits




Logical Reqister Transfers

* RTL gives the meaning of the instructions
» First step is to fetch the instruction from memory

op|rs|rt|rd|shamt|funct =MEM[ PC ]

op|rs|rt] Imm16 =MEM[ PC]

inst Register Transfers

ADD R[rd] <= R[rg] + R[rt]; PC<-PC+4
SUB R[rd] <-R[rs] —R[rt]; PC<-PC+4
OR R[rt] <= R[rg] | R[rt]; PC<-PC+4
LOAD R[rt] <-MEM[ R[rg] + sign_ext(Imm16)]; PC <-PC + 4
STORE MEM][ R[rg] +sign_ext(Imm16) ] <-R[rt]; PC<-PC +4
BEQ if (R[rs] == R[rt] ) then PC <—PC +

sign_ext(Imm16)] || 00
edsePC<-PC+4

Step 1: Requirements of the Instruction Set

* Memory
— instruction & data
* Registers (32 x 32)
—read RS
—read RT
— Write RT or RD

. PC

» Extender
* Add and Sub register or extended immediate
* Add 4 or extended immediate to PC




Step 2: Components of the Datapath

+ Combinational Elements

» Storage Elements
— Clocking methodology

Abstract/Simplified View of Datapath

| Data

—>| Register #

Address  Instruction == Registers > AL Address
Instruction —>| Register #
memory Data
—>| Register # memory

Data

« Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)




Combinational Logic Elements (Basic Building Blocks)
Carryln

A
Adder Sum
B Carry
Sl
t
A
MUX 7’3 =
B >C< 3 Y
3
(@]
P
A3
ALU Result
3
B3

State Elements: Review

e Unclocked vs. Clocked
¢ Clocks used in synchronous logic
— when should an element that contains state be updated?

/falling edge

rising edge

cycletime




An unclocked state element

* The set-reset latch
— output depends on present inputs and also on past inputs

Ql

Latches and Flip-flops

« Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

« Change of state (value) is based on the clock
« Latches: whenever the inputs change, and the clock is asserted

« Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can beread and written
— wouldn't want to read a signal at the sametime it was being written




D-latch

« Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
e Two outputs:

— the value of the internal state (Q) and its complement

N -
L

D flip-flop

« Output changes only on the clock edge

latch latch _|
C




Our Implementation

« An edge triggered methodology

« Typical execution:
— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

State
element
2

State
element

Clock c:y(:IeA|

State
element

Combinational logic

Storage Element: Reqister (Basic Building Block)

* Register Write EnTIe

— Similar to the D Flip Flop except
* N-bit input and output Daﬁln
» Write Enable input
— Write Enable: CI?
» negated (0): Data Out will not
change
« asserted (1): Data Out will become
Data In

Data Out
N




Reaqister File

e Built using D flip-flops

Read register
number 1

Register 0

)4_

Register 1

Register n—

Register n

U > Read data 1

Read register
number 2

ez )+ (

C

——> Read data 2

Wit
register

Write
data

Read register
number 1

Read register
number 2

Register file
e

Write

Read|
data 1

Read|
data 2

Reqister File

* Note: we still use the clock to determine when to write

Write

Register number

sy

Cc

D

Register 0

|

Cc

D

Register 1

Cc

Registern — 1

D

O
1o

Register data:

Cc

D

Register n
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Storage Element: Register File RWRARB

Write Enable5Jf 5J( 5J(
Register File consists of 32 registers: | bUSA

— Two 32-bit output busses: busw 32 32-bit 7"3
busA and busB 37 Reqisters

_ it i . Clk €g busB
One 32-bit input bus: buswW =25 3

Register is selected by:
— RA (number) selects the register to put on busA (data)
— RB (number) selects the register to put on busB (data)

— RW (number) selects the register to be written
via busW (data) when Write Enable is 1

Clock input (CLK)
— The CLK input is a factor ONLY during write operation

— During read operation, behaves as a combinational logic
block:

* RA or RB valid => busA or busB valid after “access time.”

Storage Element: Idealized Memory

Write Enable |Addr$s
e Memory (idealized) |

— One input bus: Data In Dataln DataOut
— One output bus: Data Out 37 32
e Memory word is selected by: %o

— Address selects the word to put on Data Out

— Write Enable = 1: address selects the memory
word to be written via the Data In bus

e Clock input (CLK)
— The CLK input is a factor ONLY during write operation

— During read operation, behaves as a combinational logic
block:

« Address valid => Data Out valid after “access time.”

11



Clocking Methodology

Hold Setup| Hold

A 4

. $‘ R % .
« All storage elements are clocked by the same clock edge

¢ Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew
¢ (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

Step 3

* Register Transfer Requirements
—> Datapath Assembly

* Instruction Fetch
* Read Operands and Execute Operation

12



3a: Overview of the Instruction Fetch Unit

e The common RTL operations
— Fetch the Instruction: mem[PC]
— Update the program counter:
* Sequential Code: PC <-PC + 4
* Branch and Jump: PC <- “something else”

« We don't know if instruction is a Branch/Jump or one of the
other instructions until we have fetched and interpreted the
instruction from memory. So all instructions initially increment
the PC

Instruction
address —

—|PC
Instruction fe—s >Add Sum

Instruction
memory b

a. Instruction memory b. Program counter c. Adder




Datapath for Instruction Fetch

[ e—]
Read
PC address
INStruCtion fr——
Instruction
memory

3b: R-format instructions: add, sub, and, or, slt

R[rd] <- R[rs] op R[rt] Example: add rd, rs, rt

— Read register 1, Read register 2, and Write register come from
instruction’s rs, rt, and rd fields

— ALU control and RegWrite: control logic after decoding the

instruction
31 26 21 16 11 6 0
[ op | s | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
E Read ALU control
register 1 Read |,
Register | _3,| Read data 1
nur%bers registek 2 " Dat
% Wite egisters a
register Read|__,
D —| Write data 2
ata data
‘ RegWrite
a. Registers b. ALU

14



Datapath for R-format instructions

Instruction
—

Read
register 1 Read
Read data 1
register 2

Registers
Write
register Read
Write data 2
data

RegWrite

ALU operation

Reqister-Reqister Timing

clk | | L
—»| [¢— Clk-to-Q
pc _ Old Vaue New Value X
< »| Instruction Memory Access Time
Rs, Rt, Rd, Old Value New Value
Op, Func oy — -
< »1 Delay through Control Logic
ALUctr Old Value New Vaue
RegWr Old Value New Vaue
< P Register File Access Time
busA, B Old Value New Value |
ALU Delay |
busw Old Value New Vaue (|~
Rd Rs Rt l
RegWr gl 5l g ALUctr Register Write
| busa OccursHere
Rw Ra Rb >
buswW /I 32 32-bit 32 Result o
32 Registers 32 -
LSk 4 busB
32
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3d: Load & Store Operations

e R[rf] <- Mem[R][rs] + SighExt[imm16]] Example: lw rt, rs, imm16
¢ Mem[ R[rs] + SignExt[imm16] <- R[rt] ] Example: sw rt, rs, imm16
31 26 21 16 0
op | rs | rt | immediate |
6 bits 5 bits 5 bits 16 bits
| MemWrite
—| Address Read|
data
Write Data
data memory
MemRead

a. Data memory unit

b. Sign-extension unit

Datapath for lw & sw

Instruction

Read
register 1 Read
Read data 1
register 2
. Regqisters
Write
register Read
Write data 2
data
RegWrite
16 i
\ Sign
N | extend

ALU operation

MemWrite
Read
Address data
Data
’ memo
Write i
data
MemRead

16



3f: The Branch Instruction

31 26 21 16 0
| op | rs | rt | immediate
6 bits 5 bits 5 bits 16 bits

beq rs, rt,imm16

— mem[PC] Fetch the instruction from memory
— Equal <- R[rs] == R[rt] Calculate the branch condition
if (COND eq 0) Calculate the next instruction’s address
PC <- PC +4 + ( SignExt(imm16) x 4)
else
PC <- PC+4

Datapath for branch instruction

PC + 4 from instruction datapath ==

Add Sum Branch target
ALU operation
Read
Instruction register 1 Read
Read data 1
register 2 . To branch
Write Registers control logic
register Read
Write data 2
data
Rog\/vmo‘
16 ) 32
A Sign
extend

17



Using multiplexors to stitch together the datapath for
memory access and R-format instructions

Add
4 b
Read Registers
register 1
Read ’ Read
address Read data 1
. register 2 ata
Instruction f-
Write Read Address ~ Read
register data 2 data
Instruction P
Write
memory ™ data Data
Write Mmemory
data
16 [ sign \32

> extend

Putting it all together

Add l
-
Read Registers 34 ALU operation MemWrite
L, | Read register 1 Read ALLIJSrc
address rReeg?sdter 5 data 1 MemtoReg
Instruction
Write Read M - Address I?je?d_,
Instruction register  data 2 u @l m
memory o \é\/arllée p— | X Data X
Write memory
RegWritd data
16 .
Sign
exregnd MemRead|
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Putting it all together cont’d

PCSr(
l 1
Add M
AL 5
0
Add eyl
R(:gIWrn(: >
Instruction [25—21] Read
Read register 1 Read MemWrite
address Instruction [20-16k— _[Read data 1 ALUSIC '
Instruction register 2 Read|
- 1 ; 1
[ v R wite data 2 Address  Read
. X u register M data
Instruction Instruction [154 11] | x Write u
memory 1 0) [Pl data Registers )C()
Write _Data
RegDst| data Mmemory
Instruction [15— 16 [ sign |32 /
extend
MemRead

Instruction [5-0]

\ALUOD

MemtoReg

N4

Adding the control unit

Add ALY

result
Add| -
PCSrc
RegDst
4 ch

Instruction [31-26]

Instruction [25 21] Read
Read
pope—s| Read register 1 Read
Instruction [20 16] Read data 1
register 2
et — 0 Registers Read
M Write data 2
Instruction u register
memory instruction (15 411) 1* Write
U |daa
Instruction [15 0] [ sign |32
extend

Instruction [5-0]
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An Abstract View of the Critical Path
* Register file and ideal memory:
— The CLK input is a factor ONLY during write operation
— During read operation, behave as combinational logic:
« Address valid => Output valid after “access time.”

Critical Path (Load Operation) =

PC’s Clk-to-Q +
I deal Instruction Memory’s Access Time +
Instruction L Register File'sAccess Time +
Memory Instruction ALU to Perform a 32-bit Add +
/ Rd| Rs| Rt Imm Data Memory Access Time +
Y 5, 5 5 16 Setup Timefor Register File Write +
Instruction Clock Skew
Address
A Data
g [RvRaRO]—~ "\ 2 addess[ T —
32 32—b|t > Data
Registers | g Data Memory

A \ m >

A | “%_
Clk

| A Clk

Step 4: Given Datapath: RTL -> Control

Instruction<31:0>
Inst & [ 2 [a |a
= = 2] =
Memory » o b N
o o o ¥
Adr Vv \ Vv \

Op Fun Rt Rs Rd Immil6

Control

Branch RegWr RegDst ALUSIC ALUOD \jemRd  MemWr MemtoReg T Zero

N A S Y S S N

DATA PATH

20



Control

¢ Selecting the operations to perform (ALU, read/write, etc.)
Design the ALU Control Unit

Controlling the flow of data (multiplexor inputs)

Design the Main Control Unit

* Information comes from the 32 bits of the instruction

e Example:

add $8, $17, $18 Instruction Format:

| 000000| 10001 | 10010 01000| 00000100000 |

| op | rs |rt |rd |sham|funct|

¢ ALU's operation based on instruction type and function code

ALU Control

e.g., what should the ALU do with this instruction
Example: Iw $1, 100($2)

| 35 | 2 | 1 | 100 |

| op | rs | rt | 16 bit offset |

ALU control input

000 AND

001 R

010 add

110 subtract

111 set-on-1 ess-than

Why is the code for subtract 110 and not 0117?)

(Recall design of ALU from Chapter 4. Bnegate input for adder set to
1 for subtraction

21



ALU Control Design

Instruction Instruction Desired ALU control
opcode ALUOp operation Eunct field | ALU action | input
LW 00 Load word | XXXXXX Add 010
SW 00 Store word | XXXXXX Add 010
BEQ 01 Branch eq XXXXXX Subtract 110
R-type 10 Add 100000 Add 010
R-type 10 Subtract 100010 Subtract 110
R-type 10 AND 100100 And 000
R-type 10 OR 1000101 Or 001
R-type 10 Setonless | 101010 Setonless | 111
than than
Control

Must describe hardware to compute 3-bit ALU control input
— given instruction type

00 = lw, sw

01 = beq
10 = arithmetic
— function code for arithmetic

T~ ALUOp

computed from instruction type

Describe it using a truth table (can turn into gates):

ALL

JOp

unct fie

Operation

ALUOp1

B
ol

ALUOpPO

F3|F2

010

110

010

110

000

001

g g I R S o U

[l el Ll Ll el (=)

XXXXXIF e
X PP X XX

rloloflox < @&

R oo lo o X [Xx
ol |lolo XX

ollolelox|x@

111
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Design the main control unit

Seven control signals
RegDst
RegWrite
ALUSrc
PCSrc
MemRead
MemWrite
MemtoReg

Control Signals

1.

RegDst = 0 => Register destination number for the Write register
comes from the rt field (bits 20-16)

RegDst = 1 => Register destination number for the Write register
comes from the rd field (bits 15-11)

. RegWrite = 1 => The register on the Write register input is written with

the data on the Write data input (at the next clock edge)
ALUSrc = 0 => The second ALU operand comes from Read data 2

ALUSrc =1 => The second ALU operand comes from the sign-
extension unit

PCSrc = 0 =>The PC is replaced with PC+4
PCSrc = 1 => The PC is replaced with the branch target address

MemtoReg = 0 => The value fed to the register write data input comes
from the ALU

MemtoReg = 1 => The value fed to the register write data input comes
from the data memory

MemRead = 1 => Read data memory
MemWrite = 1 => Write data memory

23



R-format instructions

RegDst =1
RegWrite = 1
ALUSrc=0
Branch =0
MemtoReg =0
MemRead =0
MemWrite = 0
ALUOp =10

Memory access instructions

Load word Store Word
RegDst =0 0 RegDst = X
RegWrite = 1 RegWrite = 0
ALUSrc =1 ALUSrc=1
Branch =0 Branch =0
MemtoReg = 1 MemtoReg = X
MemRead = 1 MemRead = 0
MemWrite = 0 MemWrite = 1
ALUOp = 00 ALUOp = 00

24



Branch Equal

RegDst = X
RegWrite =0
ALUSrc =0
Branch =1
MemtoReg = X
MemRead = 0
MemWrite = 0
ALUOp = 01

Control
Instruct [25-21]
u Sl Instruction [20- 16}
| || g
memory x
Insincton {15
Memto- | Reg [ Mem | Mem
Instruction | RegDst | ALUSrc | Rea | Write| Read | Write| Branch | ALUOp1 | ALUpO
R-format 1 0 0 1 0 0 0 1 0
I w 0 1 1 1 1 0 0 0 0
Sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

25



Step 5: Implementing Control

MemtoReg

Operatior
D— RegWrite

Branch
ALUOpL
ALUOpO

¢ Simple combinational logic Inputs
(truth tables) o
op
Op:
- Opl I
LUC OpO- ” I I T
ALU control block fele | OO lolc -!-&
) ALUOpPO
ALUop Outputs
— R-forma I L be RegDst
Operation2 ) ALUSTC

F (5-0)
—_—

ALU Control Unit

Main Control Unit

Our Simple Control Structure

< All of the logic is combinational
« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
e Cycle time determined by length of the longest path

State State
element Combinational logic element
1 2

Clock cycleJ—I—l_
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An Abstract View of the Critical Path

* Register file and ideal memory:
— The CLK input is a factor ONLY during write operation
— During read operation, behave as combinational logic:
« Address valid => Output valid after “access time.”

Critical Path (Load Operation) =

PC’'sClk-to-Q +
I deal Instruction Memory’s Access Time +
Instruction L Register File'sAccess Time +
Memory Instruction ALU to Perform a 32-bit Add +
/ Rd| Rs| Rt Imm Data Memory Access Time +
Y 5, 5 5 16 Setup Timefor Register File Write +
Instruction Clock Skew
Address
A Data
g [RvRaRO]—~ "\ 2 addess[ T —
32 32—b|t > Data
Registers | g Data | Memory
A | 3 I T >
cik § 32 Clk
v

Single Cycle Implementation

¢ Calculate cycle time assuming negligible delays except:
— memory (2ns), ALU and adders (2ns), register file access (1ns)

Add l
RegWite
1
Instruction [25-21] Read
Read register1  Reaq MemWrite
address Instruction [20-16] Read data 1 T | e
ALUSrc MemtoReg
Instruction| L register 2 Zer
31— 014 1) . Read ALU AL
[ Wite data Address  Read
ul register datal
Instruction Instruction [15-11]| x| | wite
memory p——————— 0| | e Registers
Data
RegDs ngf memory
Instruction [15-0] 16 sign | 32

extend MemRead

Instruction [5—0]

ALUOp




A Real MIPS Datapath (CNS T0)

magen cpucntl

Summary

» 5 steps to design a processor

— 1. Analyze instruction set => datapath requirements
2. Select set of datapath components & establish clock methodology
3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction to determine setting of control
points that effects the register transfer.

5. Assemble the control logic

* MIPS makes it easier
Instructions same size

Source registers always in same place
Immediates same size, location

Operations always on registers/immediates

» Single cycle datapath => CPI=1, Clock Cycle Time => long
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