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Ch 5: Designing a Single Cycle Datapath

Computer Systems Architecture
CS 365

The Big Picture: Where are We Now?

• The Five Classic Components of a Computer

• Today’s Topic: Design a Single Cycle Processor

Control

Datapath

Memory

Processor
Input

Output

inst. set design (Ch 3) technology 

machine
design Arithmetic (Ch 4)
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The Big Picture: The Performance Perspective

• Performance of a machine is determined by:
– Instruction count
– Clock cycle time
– Clock cycles per instruction

• Processor design (datapath and control) will determine:
– Clock cycle time
– Clock cycles per instruction

• Today:
– Single cycle processor:

• Advantage: One clock cycle per instruction
• Disadvantage: long cycle time

CPI

Inst. Count Cycle Time

How to Design a Processor: step-by-step

1. Analyze instruction set => datapath requirements
– the meaning of each instruction is given by the register transfers
– datapath must include storage element for ISA registers

• possibly more
– datapath must support each register transfer

2. Select set of datapath components and establish clocking methodology
3. Assemble datapath meeting the requirements
4. Analyze implementation of each instruction to determine setting of control 

points that effects the register transfer.
5. Assemble the control logic
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The MIPS Instruction Formats

• All MIPS instructions are 32 bits long.  The three  instruction formats:

– R-type

– I-type

– J-type

• The different fields are:
– op: operation of the instruction
– rs, rt, rd: the source and destination register specifiers
– shamt: shift amount
– funct: selects the variant of the operation in the “op” field
– address / immediate: address offset or immediate value
– target address: target address of the jump instruction 

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Step 1a: The MIPS-lite Subset

• ADD, SUB, AND, OR
– add rd, rs, rt
– sub rd, rs, rt
– and rd, rs,rt
– or rd,rs,rt

• LOAD and STORE Word
– lw rt, rs, imm16
– sw rt, rs, imm16

• BRANCH:
– beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Logical Register Transfers

• RTL gives the meaning of the instructions
• First step is to fetch the instruction from memory

op | rs | rt | rd | shamt | funct = MEM[ PC ]

op | rs | rt |   Imm16                = MEM[ PC ]

inst Register Transfers

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

OR R[rt] <– R[rs] | R[rt]; PC <– PC + 4

LOAD R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4

STORE MEM[ R[rs] + sign_ext(Imm16) ] <– R[rt]; PC <– PC + 4

BEQ if ( R[rs] == R[rt] ) then PC <– PC + 
sign_ext(Imm16)] || 00 

else PC <– PC + 4

Step 1: Requirements of the Instruction Set

• Memory
– instruction & data

• Registers (32 x 32)
– read RS
– read RT
– Write RT or RD

• PC
• Extender
• Add and Sub register or extended immediate
• Add 4 or extended immediate to PC
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Step 2: Components of the Datapath

• Combinational Elements
• Storage Elements

– Clocking methodology

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

Abstract/Simplified View of Datapath

• Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)
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Combinational Logic Elements (Basic Building Blocks)

• Adder

• MUX

• ALU

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

O
P

32A

B 32

Y32

Selec
t

A
dder

M
U

X
A

L
U

CarryIn

• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

State Elements: Review
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• The set-reset latch
– output depends on present inputs and also on past inputs

An unclocked state element

Q

_
Q

R

S

• Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

• Change of state (value) is based on the clock
• Latches:  whenever the inputs change, and the clock is asserted
• Flip-flop:  state changes only on a clock edge

(edge-triggered methodology)

"logically true", 
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops
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• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and its complement

D-latch

Q

C

D

_
Q

D

C

Q

D flip-flop

• Output changes only on the clock edge

QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

C

D

C

Q
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Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements, 
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State
element

1
Combinational logic

State
element

2

State
element Combinational logic

Storage Element: Register (Basic Building Block)

• Register
– Similar to the D Flip Flop except

• N-bit input and output
• Write Enable input

– Write Enable:
• negated  (0): Data Out will not 

change
• asserted (1): Data Out will become 

Data In

Clk

Data In

Write Enable

N N
Data Out
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• Built using D flip-flops

Register File

M
u
x

Register 0
Register 1

Register n – 1
Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Register File

• Note:  we still use the clock to determine when to write

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Regi ster n

C

C

D

D

Register nu mber

Write

Regi ster data

0

1

n – 1

n
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Storage Element: Register File

• Register File consists of 32 registers:
– Two 32-bit output busses:

busA and busB
– One 32-bit input bus: busW

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be  written

via busW (data) when Write Enable is 1
• Clock input (CLK) 

– The CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic 

block:
• RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRARB

32 32-bit
Registers

Storage Element: Idealized Memory

• Memory (idealized)
– One input bus: Data In
– One output bus: Data Out

• Memory word is selected by:
– Address selects the word to put on Data Out
– Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK) 

– The CLK input is a factor ONLY during write operation
– During read operation, behaves  as a combinational logic 

block:
• Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
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Clocking Methodology

• All storage elements are clocked by the same clock edge
• Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew
• (CLK-to-Q + Shortest Delay Path - Clock Skew)  >  Hold Time

Clk

Don’t Care
Setup Hold

.

.

.

.

.

.

.

.

.

.

.

.

Setup Hold

Step 3

• Register Transfer Requirements
–> Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation
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3a: Overview of the Instruction Fetch Unit

• The common RTL operations
– Fetch the Instruction: mem[PC]
– Update the program counter:

• Sequential Code: PC <- PC + 4 
• Branch and Jump:   PC <- “something else”
• We don’t know if instruction is a Branch/Jump or one of the 

other instructions until we have fetched and interpreted the 
instruction from memory. So all instructions initially increment
the PC

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder
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PC

Instruction
memory

Read
address

Instruction

4

Add

Datapath for Instruction Fetch

3b: R-format instructions: add, sub, and, or, slt

• R[rd] <- R[rs] op R[rt] Example: add    rd, rs, rt
– Read register 1, Read register 2, and Write register come from 

instruction’s rs, rt, and rd fields
– ALU control  and RegWrite: control logic after decoding the 

instruction             

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3
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Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

Datapath for R-format instructions

Register-Register Timing

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
L

U

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access Time

Old Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here
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3d: Load & Store Operations

• R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw    rt, rs, imm16
• Mem[ R[rs] + SignExt[imm16] <- R[rt] ] Example: sw    rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Datapath for lw & sw
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3f: The Branch Instruction

• beq rs, rt, imm16

– mem[PC] Fetch the instruction from memory

– Equal <- R[rs] == R[rt] Calculate the branch condition

if (COND eq 0) Calculate the next instruction’s address
PC  <- PC + 4 + ( SignExt(imm16) x 4 )

else
PC  <- PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

Datapath for branch instruction
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PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

Using multiplexors to stitch together the datapath for 
memory access and R-format instructions

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Putting it all together
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MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Putting it all together cont’d

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

Adding the control unit
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An Abstract View of the Critical Path
• Register file and ideal memory:

– The CLK input is a factor ONLY during write operation
– During read operation, behave as combinational logic:

• Address valid => Output valid after “access time.”

Critical Path (Load Operation) = 
PC’s Clk-to-Q +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Setup Time for Register File Write +
Clock Skew

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data 
In

Data
Address

Ideal
Data

Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

Step 4: Given Datapath: RTL -> Control

ALUopRegDst ALUSrc MemRd MemtoRegMemWr Zero

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

Branch

Adr

Inst
Memory

DATA PATH

Control

Op

<21:25>

Fun

RegWr
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Control

• Selecting the operations to perform (ALU, read/write, etc.)

Design the ALU Control Unit

• Controlling the flow of data (multiplexor inputs)

Design the Main Control Unit

• Information comes from the 32 bits of the instruction

• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

• e.g., what should the ALU do with this instruction
• Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?)

ALU Control

(Recall design of ALU from Chapter 4. Bnegate input for adder set to 
1 for subtraction
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ALU Control Design

111Set on less 
than

101010Set on less 
than

10R-type

001Or1000101OR10R-type

000And100100AND10R-type

110Subtract100010Subtract10R-type

010Add100000Add10R-type

110SubtractxxxxxxBranch eq01BEQ

010AddxxxxxxStore word00SW

010AddxxxxxxLoad word00LW

ALU control 
input

Desired 
ALU actionFunct field

Instruction 
operationALUOp

Instruction 
opcode

• Must describe hardware to compute 3-bit ALU control input
– given instruction type 

00 = lw, sw
01 = beq 
10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp 
computed from instruction type

Control

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111
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Design the main control unit

• Seven control signals
RegDst
RegWrite
ALUSrc
PCSrc
MemRead
MemWrite
MemtoReg

Control Signals

1. RegDst = 0 => Register destination number for the Write register 
comes from the rt field (bits 20-16)

RegDst = 1 => Register destination number for the Write register 
comes from the rd field (bits 15-11)

2. RegWrite = 1 => The register on the Write register input is written with 
the data on the Write data input (at the next clock edge)

3. ALUSrc = 0 => The second ALU operand comes from Read data 2
ALUSrc = 1 => The second ALU operand comes from the sign-

extension unit
4. PCSrc = 0 => The PC is replaced with  PC+4

PCSrc = 1 => The PC is replaced with the branch target address
5. MemtoReg = 0 => The value fed to the register write data input comes 

from the ALU
MemtoReg = 1 => The value fed to the register write data input comes 

from the data memory
6. MemRead = 1 => Read data memory
7.  MemWrite = 1 => Write data memory
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R-format instructions

RegDst = 1
RegWrite = 1
ALUSrc = 0
Branch = 0
MemtoReg = 0
MemRead = 0
MemWrite = 0
ALUOp = 10

RegDst = 0

RegWrite = 1

ALUSrc = 1

Branch = 0

MemtoReg = 1

MemRead = 1

MemWrite = 0

ALUOp = 00

Memory access instructions

RegDst = X

RegWrite = 0

ALUSrc = 1

Branch = 0

MemtoReg = X

MemRead = 0

MemWrite = 1

ALUOp = 00

Load word Store Word

0
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Branch Equal

RegDst =  X

RegWrite = 0

ALUSrc = 0

Branch = 1

MemtoReg = X

MemRead = 0

MemWrite = 0

ALUOp = 01

Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address
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Step 5: Implementing Control

• Simple combinational logic 
(truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

ALU Control Unit
Main Control Unit

• All of the logic is combinational

• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

Clock cycle

State
element

1
Combinational logic

State
element

2
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An Abstract View of the Critical Path
• Register file and ideal memory:

– The CLK input is a factor ONLY during write operation
– During read operation, behave as combinational logic:

• Address valid => Output valid after “access time.”

Critical Path (Load Operation) = 
PC’s Clk-to-Q +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Setup Time for Register File Write +
Clock Skew

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data 
In

Data
Address

Ideal
Data

Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result



28

A Real MIPS Datapath (CNS T0)

Summary

• 5 steps to design a processor
– 1. Analyze instruction set => datapath requirements
– 2. Select set of datapath components & establish clock methodology
– 3. Assemble datapath meeting the requirements
– 4. Analyze implementation of each instruction to determine setting of control 

points that effects the register transfer.
– 5. Assemble the control logic

• MIPS makes it easier
– Instructions same size
– Source registers always in same place
– Immediates same size, location
– Operations always on registers/immediates

• Single cycle datapath => CPI=1, Clock Cycle Time => long


