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Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:
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• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach
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• Finite state machines:
– a set of states and 
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review:  finite state machines
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Review:  finite state machines

• Example:  

B. 21 A friend would like you to build an “electronic eye” for use as a fake security 
device.  The device consists of three lights lined up in a row, controlled by the outputs 
Left, Middle, and Right, which, if asserted, indicate that a light should be on.  Only one 
light is on at a time, and the light “moves” from left to right and then from right to left, 
thus scaring away thieves who believe that the device is monitoring their activity.  Draw 
the graphical representation for the finite state machine used to specify the electronic eye.  
Note that the rate of the eye’s movement will be controlled by the clock speed (which 
should not be too great) and that there are essentially no inputs.
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• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach
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Multicycle Datapath with control signals
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Multicycle Datapath & Control
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• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps
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High level view of finite state machine control
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Branch instruction
(Figure 5.40)

Jump instruction
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(Figure 5.37)

Start

10

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch
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• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch

12

Instruction Fetch & Decode
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• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)
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• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)
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• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write-back step
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Finite state machine for memory access 
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Finite state machine for R-format instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite
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Finite state machine for branch instruction

Branch completion
8
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(Figure 5.37)
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Finite State Machine for jump

Jump completion
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From state 1

To state 0
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Summary:

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Complete Finite State Machine
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• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions
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Exceptions

• Hardest part of control is to implement exceptions & interrupts

Exception or 
interrupt

Internal or 
External

Hardware 
malfunctions

ExceptionInternalUsing an undefined 
instruction

ExceptionInternalArithmetic overflow

ExceptionInternalInvoke the operating 
system from user 
program

InterruptExternalI/O device request

MIPS terminologyFrom where?Type of event
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How are exceptions handled?

• In our design, we will consider two types of exceptions
– Arithmetic overflow
– Execution of an undefined instruction

• Actions on exception
– Save address of offending instruction in the Exception Program 

Counter (EPC)
– Transfer control to the operating system at a pre-specified 

address (exception handler)
• OS then takes appropriate action



25

Exception handling

• For the OS to take appropriate action, it must know the reason for the 
exception

• Two ways to communicate reason to OS
– Have a Status register which holds a field that indicates the 

reason for the exception
– Vectored interrupts

• Address to which control is transferred depends upon the cause of the 
exception

• MIPS uses first method above; it has a register called Cause (in 
addition to the EPC register)
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Datapath & Control with support for exceptions
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Exception Handling

• Datapath additions
– EPC, Cause (for undefined instruction, Cause = 0, arithmetic 

overflow Cause = 1)
• Control Signals

– EPCWrite, CauseWrite
– IntCause (sets the Cause register)
– PCSrc has to be modified so that one of its sources is the OS 

entry point
• Three steps

1. Write Cause
2. EPC = PC – 4 (Have to use ALU, so need to expand multiplexors 

for ALUSrcA and ALUSrcB
3. Write PC
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Datapath & Control with support for exceptions
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States for handling exceptions
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To state 0 to begin next instruction
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Complete FSM including support for exceptions
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• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve acculumated to specify a finite state machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

Implementing the Control

Graphical Specification of FSM
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• Implementation:

Finite State Machine for Control
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PLA Implementation

• If I picked a horizontal or vertical line could you explain it?
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• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM.
– our outputs are the bits of data that the address points to.

– m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1
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• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits    (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the 
same

— i.e., opcode is often ignored

ROM Implementation
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• Break up the table into two parts
— 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs ? #product-terms) + (#outputs ? #product-terms)
For this example  =  (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA
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The Big Picture
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