
1

Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

2

• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

3

• Finite state machines:
– a set of states and
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Next-state
functionCurrent state

Clock

Output
function

Next
state

Outputs

Inputs

4

Review: finite state machines

• Example:

B. 21 A friend would like you to build an “electronic eye” for use as a fake security
device. The device consists of three lights lined up in a row, controlled by the outputs
Left, Middle, and Right, which, if asserted, indicate that a light should be on. Only one
light is on at a time, and the light “moves” from left to right and then from right to left,
thus scaring away thieves who believe that the device is monitoring their activity. Draw
the graphical representation for the finite state machine used to specify the electronic eye.
Note that the rate of the eye’s movement will be controlled by the clock speed (which
should not be too great) and that there are essentially no inputs.

5

• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

6

Multicycle Datapath with control signals

S h ift

le ft 2

M e m to R e g

IorD M e m R e ad M e m W rite

P C

M em o ry

M e m D a ta

W rite

da ta

M
u
x

0

1

R e g iste rs
W rite
r eg is te r

W rite
d a ta

R e a d
da ta 1

R e a d
da ta 2

R e a d
r eg is te r 1

R e a d
r eg is te r 2

In stru c tion
[1 5– 1 1]

M
u
x

0

1

M
u
x

0

1

4

A L U O pA L U S r cB

R eg D st R eg W r ite

In stru c tio n
[1 5– 0]

In stru ct io n [5– 0]

S ig n

ex ten d

3216

Ins t ru c tio n
[2 5 – 2 1]

Ins t ru c tio n
[2 0 – 1 6]

Ins t ru c tio n
[1 5 – 0]

In s tru ct io n

re g is te r

1 M

u
x

0

3

2

A L U

c o ntro l

M
u

x

0

1
A L U

res u lt

A L U

A L U S rcA

Z e ro
A

B

A LU O u t

IR W rite

A d dr e ss

M e m o ry

d a ta

r eg is te r

7

Multicycle Datapath & Control

Shift
left 2

PC
M
u
x

0

1
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15–0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

8

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

9

High level view of finite state machine control

Memory access
instructions
(Figure 5.38)

R-type instructions
(Figure 5.39)

Branch instruction
(Figure 5.40)

Jump instruction
(Figure 5.41)

Instruction fetch/decode and register fetch
(Figure 5.37)

Start

10

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

11

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

12

Instruction Fetch & Decode

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

(Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

=
'B

EQ')

(O
p

=
'J

M
P

')

0
1

Start

Memory reference FSM
(Figure 5.38)

R-type FSM
(Figure 5.39)

Branch FSM
(Figure 5.40)

Jump FSM
(Figure 5.41)

13

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

14

• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

15

• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write-back step

16

Finite state machine for memory access
instructions

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory
access

Write-back step

(Op
=

'SW
')

(O
p

=
'L

W
')

4

2

53

From state 1

To state 0
(Figure 5.37)

Memory
access

17

Finite state machine for R-format instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

Execution

R-type completion

6

7

(Op = R-type)
From state 1

To state 0
(Figure 5.37)

18

Finite state machine for branch instruction

Branch completion
8

(Op = 'BEQ')
From state 1

To state 0
(Figure 5.37)

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

19

Finite State Machine for jump

Jump completion
9

(Op = 'J')
From state 1

To state 0
(Figure 5.37)

PCWrite
PCSource = 10

20

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

21

Complete Finite State Machine

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

=
'B

E Q')

(O
p

=
'J

')

(O
p

=
'SW

')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

22

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

23

Exceptions

• Hardest part of control is to implement exceptions & interrupts

Exception or
interrupt

Internal or
External

Hardware
malfunctions

ExceptionInternalUsing an undefined
instruction

ExceptionInternalArithmetic overflow

ExceptionInternalInvoke the operating
system from user
program

InterruptExternalI/O device request

MIPS terminologyFrom where?Type of event

24

How are exceptions handled?

• In our design, we will consider two types of exceptions
– Arithmetic overflow
– Execution of an undefined instruction

• Actions on exception
– Save address of offending instruction in the Exception Program

Counter (EPC)
– Transfer control to the operating system at a pre-specified

address (exception handler)
• OS then takes appropriate action

25

Exception handling

• For the OS to take appropriate action, it must know the reason for the
exception

• Two ways to communicate reason to OS
– Have a Status register which holds a field that indicates the

reason for the exception
– Vectored interrupts

• Address to which control is transferred depends upon the cause of the
exception

• MIPS uses first method above; it has a register called Cause (in
addition to the EPC register)

26

Datapath & Control with support for exceptions

Shift
left 2

Memory

MemData

Write
data

M
u
x

0

1

Instruction
[15– 11]

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

Control

Outputs

Op
[5–0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

Address

EPC

CO 00 00 00 3

Cause

ALUOp
ALUSrcB
ALUSrcA

RegDst

PCSource

RegWrite

EPCWrite
IntCause
CauseWrite

1

0

1 M
u
x

0

3
2

M
u
x

0

1

M
u
x

0

1

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALUOut

27

Exception Handling

• Datapath additions
– EPC, Cause (for undefined instruction, Cause = 0, arithmetic

overflow Cause = 1)
• Control Signals

– EPCWrite, CauseWrite
– IntCause (sets the Cause register)
– PCSrc has to be modified so that one of its sources is the OS

entry point
• Three steps

1. Write Cause
2. EPC = PC – 4 (Have to use ALU, so need to expand multiplexors

for ALUSrcA and ALUSrcB
3. Write PC

28

Datapath & Control with support for exceptions

Shift
left 2

Memory

MemData

Write
data

M
u
x

0

1

Instruction
[15– 11]

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

Control

Outputs

Op
[5–0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

Address

EPC

CO 00 00 00 3

Cause

ALUOp
ALUSrcB
ALUSrcA

RegDst

PCSource

RegWrite

EPCWrite
IntCause
CauseWrite

1

0

1 M
u
x

0

3
2

M
u
x

0

1

M
u
x

0

1

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALUOut

29

States for handling exceptions

11

10

To state 0 to begin next instruction

PC++Source = 11

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

IntCause = 0
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11
PCSource = 11

IntCause = 1
CauseWrite

30

Complete FSM including support for exceptions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

=
'B

EQ')

(O
p

=
'J

')

(O
p

=
'SW

')

(O
p

=
' L

W
')

4

0
1

9862

7 11 1053

Start

(O
p

=
other)

Overflow

Overflow

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

IntCause = 0
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

IntCause = 1
CauseWrite

PCWrite
PCSource = 10

31

• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve acculumated to specify a finite state machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

Implementing the Control

Graphical Specification of FSM

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PC WriteCond

PC Source = 01

ALU SrcA = 1
ALUSrcB = 00

ALUOp = 10

RegDs t = 1
RegWrite

M em toReg = 0
MemWrite
IorD = 1

Mem Read
IorD = 1

A LUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

M em toR eg = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

M em Read
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PC Source = 00

Instruction fe tch
Instruction decode/

register fetch

Jump
comp letion

Branch
completionExecution

M emory address
computation

M emory
access

M em ory
access R-ty pe completion

Write-back step

(Op = 'LW ') or (Op = 'SW') (Op = R-type)

(O
p

= 'B
EQ')

(O
p

=
'J

')

(Op
= 'SW

')

(O
p

=
' L

W
')

4

0
1

9862

753

Start

33

• Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond
IorD

M emtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

M emRead

M emWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

34

PLA Implementation

• If I picked a horizontal or vertical line could you explain it?
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

35

• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM.
– our outputs are the bits of data that the address points to.

– m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

36

• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the
same

— i.e., opcode is often ignored

ROM Implementation

37

• Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
— Total: 4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs ? #product-terms) + (#outputs ? #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

38

The Big Picture

Initial
representation

Finite state
diagram Microprogram

Sequencing
control

Explicit next
state function

Microprogram counter
+ dispatch ROMS

Logic
representation

Logic
equations

Truth
tables

Implementation
technique

Programmable
logic array

Read only
memory

