
1

1

Chapter 3: MIPS Instruction Set

2

Review

Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3

addi $s1,$s2,4 $s1 = $s2 + 4
ori $s1,$s2,4 $s2 = $s2 | 4

lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1

bne $s4,$s5,Label Next instr is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr is at Label if $s4 = $s5
slt $t1,$s2,$s3 if $s2 < $s3, $t1 = 1 else $t1 = 0

j Label Next instr is at Label

2

3

Pseudo-instructions

rThe MIPS assembler supports several pseudo-
instructions
m Programmers can use pseudo-instructions
m Assembler translates them into actual instructions

or sequences of instructions
r Example

move $7,$18 contents of $18 are copied to $7
is translated into

add $7, $18, $0 Remember: $0 always contains 0
r Other Examples:

m blt, seq, sle, la, li (See Appendix A for complete list)

4

The jr (jump register) instruction

jr $s1 # jump to address in $s1

rUsage
m Switch/Case statements
m Returning from procedures/functions

3

5

Using jr for implementing a switch statement

switch (k) {
case 0: f = i + j; break;
case 1: f = g + h; break
case 2: f = g – h; break

}
Assume
1. f, g, h, i, j are in registers $16 to $21, register $10

contains the constant 4
2. In memory, the code for case 0 is at address L0, the code

for case 1 is at address L1, and the code for case 2 is at
address L2

3. An array JumpTable has already been created with the
first word (at address JumpTable) containing L0, the
second word (address JumpTable + 4) containing L1, and
the third word (JumpTable + 8) containing L2

6

mult $9, $21, $10 # $9 = k*4
lw $8, JumpTable[$9]
jr $8

L0: add $16, $19, $20
j Exit

L1: add $16, $17, $18
j Exit

L2: sub $16, $17, $18
Exit:

4

7

Supporting procedure calls

r jr instruction
m Returning from a procedure

rJump and link (jal) instruction
m Jump to address of procedure, while storing

the return address in register $31 ($ra)
• What is the return address?

– PC + 4
• In MIPS, a special register called Program Counter

(PC) contains the address of the instruction currently
being

m “jal addr” stores PC+4 in register $31, and then
jumps to location “addr”

m To return from the procedure, we can simply
execute “jr $31”

8

Supporting procedure calls (cont’d)

r Passing arguments/parameters
m Parameters are passed in registers $4 - $7 ($a0 - $a3)

r Returning results
m Results are returned in register $v0

r Example
procA: <code for procedure procA>

move $a0, $s1 # assume parameter for
proc B is in register $s1

jal procB
<more code for procedure procA>
jr $ra

procB: < code for procedure procB>
move $v0, $t1 # move result to $v0
jr $ra

5

9

Supporting procedure calls (cont’d)

r Problems:
m What if procB calls another procedure?

• Contents of $ra will be overwritten!
m What if we have more than 4 parameters?

r Solution:
m Use stack in main memory for storing

1. Parameters (if procedure has more than 4)
2. Any registers that need to be preserved across procedure

calls, I.e. registers that should have the same values
before and after the procedure call

r The stack is an area of memory that grows and
shrinks dynamically.
m Register $29 ($sp) points to the top location of the

stack, I.e. register $29 is used as the stack pointer

10

Example: preserving registers across procedure calls
A: ………

jal B
……

B: ……
……
addi $sp, $sp,-4
sw $ra, 0($sp)
jal C
lw $ra, 0($sp)
addi $sp, $sp,4
……
……
jr $ra

C: ……
……
jr $ra

} Save $ra on stack

} Restore $ra from stack

NOTE: In MIPS, the stack grows
downwards

6

11

Memory

$ra

$sp

B’s return
address

Top of stack

Bottom of stack

1. After A calls B

12

Memory

$ra

$sp

B’s return
address

Bottom of stack

New Top of stack

2. Just before B calls C

7

13

Memory

$ra

$sp

B’s return
address

Bottom of stack

Top of stack

C’s return
address

3. After B calls C

14

Memory

$ra

$sp

B’s return
address

Bottom of stack

4. Just before B returns

New Top of stack

8

15

Using the stack to save registers

Contents of register$s0

Contents of register $t0

Contents of register$t1

$sp

b.

$sp

Highaddress

Lowaddress a.

$sp

c.

16

Procedure frames are pushed and
popped off the stack

Saved argument
registers (if any)

Local arrays and
structures (if any)

Saved saved
registers (if any)

Saved return address

b.

$sp

$sp

$sp

c.

$fp

$fp

$fp

a.

High address

Low address

9

17

Contents of a procedure frame

Argument 6

Argument 5

Saved registers

Local variables

Higher memory addresses

Lower memory addresses

Stack
grows

$fp

$sp

18

Why do running programs need a stack?

r Modern programming
languages are
recursive

r Example: Factorial
program is recursive
m Has a separate frame

for each invocation of
factorial()

main

fact (10)

fact (9)

fact (8)

fact (7)

Stack

Stack grows

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp

10

19

Address space for a running program

r Address Space =
Memory allocated to
program

r 3 segments
m Text (code)
m Data

• Static data
• Dynamic data

m Stack

$sp

$gp

0040 0000 he x

0

1000 0000 hex

Text

Static data

Dynamic data

Stack7ff f ffff hex

1000 8000
hex

 pc

Reserved

20

Conventions for saving and restoring registers
across procedure calls

r If a procedure modifies any registers
that are used by calling routine, some
convention is needed for saving &
restoring registers

1. Caller save: calling procedure saves and
restores any registers that must be preserved
across the call

2. Callee save: called procedure saves and
restores any registers that it might use

3. MIPS convention: some registers are caller
saved and some registers are callee saved

11

21

MIPS procedure call convention
r Caller:

1. Pass arguments. First 4 are in $a0-$a3. Remaining are
pushed on to stack and appear at the beginning of called
procedure’s stack frame

2. Save caller-saved registers ($a0-$a3,$t0 -$t9)
3. Execute jal

r Callee: (before it starts running)
1. Allocate memory for stack frame
2. Save callee-saved registers in the stack frame ($s0-

$s7,$fp,$ra)
3. Establish frame pointer

r Callee: (before returning)
1. Place return value in $v0
2. Restore all callee-saved registers
3. Pop the stack frame
4. Return by jumping to $ra

22

MIPS Assembly Language

r Assembler Directives
.allign n e.g. .allign 2
.asciiz <str>
.data <addr>
.space n
.text
.globl

r System Calls for Input/Output
1. Load system call code into register $v0 and

arguments into $a0-$a3
2. Execute syscall

See Appendix A for more
details and examples

See Figure A.17

12

23

Assignment 2

Assignment 2: matrix multiplication
mMultiply M1 (r1 rows, c1 columns) and M2 (r2 rows,

c2 columns) to obtain Mr (r1 rows, c2 columns)
• Note c1 = r2

m Three procedures
• Main()
• Matrix_multiply(r1,c1,M1,r2,c2,M2,Mr)
• Inner_product(row,num_columns,M,column,num_rows,N)

mNeed to use the stack
• for saving & restoring registers
• Passing parameters

mMatrices stored in single dimensional array using
row-major organization

24

Matrix Multiplication

Inner Product

kj

n

k

ikij BAC ⋅∑
=

=

1

n is the number of columns
in matrix A, and the

number of rows in matrix B

