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Chapter 3
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Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals:  maximize performance and minimize cost,  reduce design time
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MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code:  A = B + C

MIPS code: add $s0, $s1, $s2  

(associated with variables by compiler)
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MIPS arithmetic

• Design Principle:  simplicity favors regularity.    Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

• Operands must be registers, only 32 registers provided
• Design Principle:  smaller is faster.      Why?
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Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers, 
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables
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Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.
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...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data
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Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the  least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data
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Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 32($s3)

• Store word has destination last
• Remember arithmetic operands are registers, not memory!
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So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1
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• Instructions are bits
• Programs are stored in memory 

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs, 
compilers, editors, etc.

Stored Program Concept
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• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label 

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label: ....

Control
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• MIPS unconditional branch instructions:
j  label

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

• Can you build a simple for loop?

Control
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• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if  $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else 
$t0 = 0

• Can use this instruction to build  "blt $s1, $s2, Label" 
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Control Flow
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Policy of Use Conventions

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address
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• Small constants are used quite frequently (50% of operands) 
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions?  Why not?
– put 'typical constants' in memory and load them.  
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

Constants

16

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly 
– would be implemented using “add $t0,$t1,$zero” 

• When considering performance you should count real instructions

Assembly Language vs. Machine Language


