
1
1998 Morgan Kaufmann Publishers

Chapter 3

2
1998 Morgan Kaufmann Publishers

MIPS Instructions

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3

addi $s1,$s2,4 $s1 = $s2 + 4
ori $s1,$s2,4 $s2 = $s2 | 4

lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1

bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
slt $t1,$s2,$s3 if $s2 < $s3, $t1 = 1 else $t1 = 0

j Label Next instr. is at Label
jr $s1 Next instr is in register $s1
jal Label Jump and link procedure at Label

3
1998 Morgan Kaufmann Publishers

• Assembly provides convenient symbolic
representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

Assembly Language vs. Machine Language

4
1998 Morgan Kaufmann Publishers

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

5
1998 Morgan Kaufmann Publishers

Instruction Set Architecture: What Must be Specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

° Instruction Format or Encoding
– how is it decoded?

° Location of operands and result
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

° Data type and Size
° Operations

– what are supported
° Successor instruction

– jumps, conditions, branches

- fetch-decode-execute is implicit!

6
1998 Morgan Kaufmann Publishers

MIPS Design Principles

• Reduced Instruction Set Computers (RISC) design
philosophy

• Principles guiding Instruction Set Design
– Smaller is faster

• Example: Only 32 registers in MIPS

– Simplicity favors regularity
– Good design demands compromise
– Make the common case fast

7
1998 Morgan Kaufmann Publishers

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• R Format

Machine Language: R Format

8
1998 Morgan Kaufmann Publishers

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language: I format

9
1998 Morgan Kaufmann Publishers

Machine Language: J Format

• Jump (j) , Jump and link (jal) instructions have two fields
– Opcode
– Address

• Instruction should be 32 bits (Regularity principle)
– 6 bits for opcode
– 26 bits for address

op 26 bit addressJ

10
1998 Morgan Kaufmann Publishers

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

MIPS Instruction Formats

11
1998 Morgan Kaufmann Publishers

What about other instructions

• slt $t0, $s1, $s2
– 3 operands all registers ⇒ use R format

• beq $s1,$s2, Label

– 2 registers + address ⇒ use I format
• addi $s1,$s1, 4

– 2 registers + immediate value ⇒ use I format
• jr $t1

– 1 register
– R format

12
1998 Morgan Kaufmann Publishers

Implications of design choices

• Using I format for arithmetic instructions with immediate operands
– Only 16 bits for immediate field
– Constants have to fit in 16 bits

• Using I format for branch instructions
– Only 16 bits in immediate field
– But 32 bits needed for branch address

• J format
– Only 26 bits for address field
– But 32 bits needed for Jump address

13
1998 Morgan Kaufmann Publishers

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• So in most programs, constants will fit in 16 bits allocated for
immediate field

• Design Principle: Make the common case fast

– Common case: constant is small
– Only need to use one instruction in the common case

3

Constants

14
1998 Morgan Kaufmann Publishers

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

15
1998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address
I

J

Addresses in Branches and Jumps

16
1998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

17
1998 Morgan Kaufmann Publishers

Addressing in branches

• Immediate field is 16 bits but we need an address that is 32 bits
• Obtain address using PC-relative addressing

– On branch, new PC = PC + immediate field in branch instruction
– Actually, new PC = (PC+4) + immediate field in branch instruction

80000 Loop: mult $9, $19, $10
80004 lw $8, Sstart($9)
80008 bne $8, $21, Exit
80012 add $19,$19,$20
80016 j Loop
80020 Exit:

5 8 21 2
op rs rt address

I format

Immediate field contains the
distance in words between PC+4
and branch target address

18
1998 Morgan Kaufmann Publishers

Uncommon Case for branches

• beq $18, $19, L1
replaced by

bne $18, $19, L2
j L1

L2:

Make the common case fast
one instruction for most branches

19
1998 Morgan Kaufmann Publishers

Addressing in Jumps

• J format has 26 bits in address field
– How to get 32 bits?

• Assume that jump address is a word address

• 26 + 2 (least significant bits) = 28
• Get 4 most significant bits from PC

– 4 + 26 + 2 = 32
– Implication: can only jump within a 228 = 256 MB block of

addresses
– Loader and linker must be careful to avoid placing a program

across an address boundary of 256 MB

20
1998 Morgan Kaufmann Publishers

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
3 0

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

21
1998 Morgan Kaufmann Publishers

Byte Halfword Word

Reg isters

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressi ng

4. PC-relati ve addressing

5. Pseudodirect addressi ng

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

22
1998 Morgan Kaufmann Publishers

• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”

– virtually all new instruction sets since 1982 have been RISC

– VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures

23
1998 Morgan Kaufmann Publishers

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4
– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

24
1998 Morgan Kaufmann Publishers

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

25
1998 Morgan Kaufmann Publishers

A dominant architecture: 80x86

• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

26
1998 Morgan Kaufmann Publishers

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

Summary

