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MIPS Instructions

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3

addi $s1,$s2,4 $s1 = $s2 + 4
ori $s1,$s2,4 $s2 = $s2 | 4

lw $s1,100($s2) $s1 = Memory[$s2+100] 
sw $s1,100($s2) Memory[$s2+100] = $s1

bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
slt $t1,$s2,$s3    if $s2 < $s3, $t1 = 1 else $t1 = 0

j Label Next instr. is at Label
jr $s1 Next instr is in register $s1
jal Label Jump and link procedure at Label
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• Assembly provides convenient symbolic 
representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly 
– would be implemented using “add $t0,$t1,$zero” 

Assembly Language vs. Machine Language
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• Instructions are bits
• Programs are stored in memory 

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs, 
compilers, editors, etc.

Stored Program Concept
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Instruction Set Architecture: What Must be Specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

° Instruction Format or Encoding
– how is it decoded?

° Location of operands and result
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

° Data type and Size
° Operations

– what are supported
° Successor instruction

– jumps, conditions, branches

- fetch-decode-execute is implicit!
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MIPS Design Principles

• Reduced Instruction Set Computers (RISC) design 
philosophy

• Principles guiding Instruction Set Design
– Smaller is faster

• Example: Only 32 registers in MIPS

– Simplicity favors regularity
– Good design demands compromise
– Make the common case fast
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• Instructions, like registers and words of data, are also 32 bits long
– Example:   add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• R Format

Machine Language: R Format
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• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle:  Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language: I format
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Machine Language: J Format

• Jump (j) , Jump and link (jal) instructions have two fields
– Opcode
– Address

• Instruction should be 32 bits (Regularity principle)
– 6 bits for opcode
– 26 bits for address

op 26 bit addressJ

10
1998 Morgan Kaufmann Publishers

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three  instruction formats

op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

MIPS Instruction Formats
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What about other instructions

• slt $t0, $s1, $s2
– 3 operands all registers ⇒ use R format

• beq $s1,$s2, Label

– 2 registers + address ⇒ use I format
• addi $s1,$s1, 4

– 2 registers + immediate value ⇒ use I format
• jr $t1

– 1 register
– R format
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Implications of design choices

• Using I format for arithmetic instructions with immediate operands
– Only 16 bits for immediate field
– Constants have to fit in 16 bits

• Using I format for branch instructions
– Only 16 bits in immediate field
– But 32 bits needed for branch address

• J format
– Only 26 bits for address field
– But 32 bits needed for Jump address
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• Small constants are used quite frequently (50% of operands) 
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• So in most programs, constants will fit in 16 bits allocated for
immediate field

• Design Principle: Make the common case fast

– Common case: constant is small
– Only need to use one instruction in the common case

3

Constants
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• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?
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• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if  $t4 = $t5
j Label Next instruction is at Label 

• Formats:

• Addresses are not 32 bits 
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address
I

J

Addresses in Branches and Jumps
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• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC 
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches
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Addressing in branches

• Immediate field  is 16 bits but we need an address that is 32 bits
• Obtain address using PC-relative addressing

– On branch,  new PC = PC + immediate field in branch instruction
– Actually, new PC = (PC+4) + immediate field in branch instruction

80000   Loop:  mult $9, $19, $10
80004 lw     $8, Sstart($9)
80008 bne   $8, $21, Exit
80012 add   $19,$19,$20
80016 j   Loop
80020    Exit:

5      8       21               2
op     rs      rt             address

I format

Immediate field contains the
distance in words between PC+4
and branch target address
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Uncommon Case for branches

• beq $18, $19, L1         
replaced by

bne $18, $19, L2
j   L1

L2: 

Make the common case fast
one instruction for most branches
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Addressing in Jumps

• J format has 26 bits in address field
– How to get 32 bits?

• Assume that jump address is a word address

• 26 + 2 (least significant bits) = 28
• Get 4 most significant bits from PC

– 4 + 26 + 2 = 32
– Implication: can only jump within a 228 = 256 MB block of 

addresses
– Loader and linker must be careful to avoid placing a program 

across an address boundary of 256 MB
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To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform 

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
3 0

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw  $s1, 100($s2) $s1 = Memory[$s2  + 100] Word from memory to register
store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2  + 100] Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if ($s1 == $s2) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          
else $s1 = 0

Compare less than; for beq, bne

set less than 
immediate

slti  $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          
else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address
Uncondi- jump register jr   $ra go to $ra For switch, procedure return
tional jump jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call
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Byte Halfword Word

Reg isters

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressi ng

4. PC-relati ve addressing

5. Pseudodirect  addressi ng

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+
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• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”

– virtually all new instruction sets since 1982 have been RISC

– VAX:  minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures
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PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3  #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS? 

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4
– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register  “bc Loop”  

decrement counter, if not 0 goto loop
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80x86

• 1978:  The Intel 8086 is announced (16 bit architecture)
• 1980:  The 8087 floating point coprocessor is added
• 1982:  The 80286 increases address space to 24 bits, +instructions
• 1985:  The 80386 extends to 32 bits, new addressing modes
• 1989-1995:  The 80486, Pentium, Pentium Pro add a few  instructions

(mostly designed for higher performance)
• 1997:  MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love” 
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A dominant architecture:  80x86

• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, 
making it beautiful from the right perspective”
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• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

Summary


