

Hits vs. Misses

- Read hits
 this is what we want!
 - Read misses

 stall the CPU, fetch block from memory, deliver to cache, restart
- Write hits:

.

- can replace data in cache and memory (write-through)
- write the data only into the cache (write-back the cache later)

9

- Write misses:
 - read the entire block into the cache, then write the word

Performance
Simplified model:

execution time = (execution cycles + stall cycles) ´ cycle time stall cycles = # of instructions ´ miss ratio ´ miss penalty

Two ways of improving performance:

decreasing the miss ratio
decreasing the miss penalty

What happens if we increase block size?

- What block to replace on a cache miss?
 - We have multiple candidates (unlike direct mapped caches)
 - Random
 - FIFO (First In First Out)
 - LRU (Least Recently Used)
- Typically, cpus use Random or Approximate LRU because easier to implement in hardware

19

Example

Cache size = 4 one word blocks Replacement Policy = LRU Sequence of memory references 0,8,0,6,8 Set associativity = 4 (Fully Associative); Number of Sets = 1

0 M 0	
8 M 0 8	
0 H 0 8	
6 M 0 8 6	
8 H 0 8 6	

Example cont'd

Cache size = 4 one word blocks Replacement Policy = LRU Sequence of memory references 0,8,0,6,8 Set associativity = 2 ; Number of Sets = 2

Address	Hit/Miss	Set 0	Set 0	Set 1	Set 1
0	м	0			
8	м	0	8		
0	н	0	8		
6	М	0	6		
8	М	8	6		

21

ache size	e = 4 one v	vord block	S			
eplaceme	ent Policy	= LRU				
Sequence	of memor	y reference	es 0,8,0,6	5,8		
Set associ	ativity = 1	(Direct Ma	pped Ca	che)		
	Address	Hit/Miss	0	1	2	3
	0	м	0			
	8	м	8			
	0	м	0			
	6	м	0		6	
	8	м	8		6	

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>