Chapter Seven

Memories: Review

* SRAM:
— value is stored on a pair of inverting gates
— very fast but takes up more space than DRAM (4 to 6 transistors)

* DRAM:
— value is stored as a charge on capacitor (must be refreshed)
— very small but slower than SRAM (factor of 5to 10)




Exploiting Memory Hierarchy

e Users want large and fast memories!

SRAM accesstimesare 2 - 25ns at cost of $100 to $250 per M byte.
DRAM accesstimes are 60-120ns at cost of $5 to $10 per Mbyte. 1997
Disk accesstimesare 10 to 20 million nsat cost of $.10 to $.20 per Mbyte.

e Try and give it to them anyway
— build a memory hierarchy

CPU

Increasing distance
from the CPU in
access time

Level 1

Levels in the Level 2
memory hierarchy

Leveln

Size of the memory at each level

Locality

« A principle that makes having a memory hierarchy a good idea

* |If anitemis referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

e Ourinitial focus: two levels (upper, lower)
— block: minimum unit of data
— hit: datarequested is in the upper level
— miss: datarequested is not in the upper level




Cache

e« Two issues:
— How do we know if a data item is in the cache?
— Ifitis, how do we find it?
e Our first example:
— block size is one word of data
"direct mapped"

For each item of data at the lower level,
thereisexactly onelocation in the cache where it might be.

e.g., lotsof items at the lower level sharelocationsin the upper level

Direct Mapped Cache

e Mapping: address is modulo the number of blocks in the cache

00001 00101 01001 01101 10001 10101 11001 11101

Memory




Direct Mapped Cache

° For M'PS Address (showing bit positions)
) 3130 --+131211 --210
I [ L]
offset
Hit Tag -l\ZO S Data
Index
Index Valid Tag Data
0
1
2
1021
1022
1023
20 32
(=

What kind of locality are we taking advantage of ?

Direct Mapped Cache

e Taking advantage of spatial locality:

Address (showing bit positions)
31---16 15--4 3210

) 16 J12 J2Byte
Hit Tag ‘|~ S S offset Data
Index Block offset
16 bits 128 bits
VvV  Tag Data
4K
entries
16 \\32 \\32 \\32 \\32
/=
Mux
32




Hits vs. Misses

* Read hits
— this is what we want!

* Read misses
— stall the CPU, fetch block from memory, deliver to cache, restart

e Write hits:
— can replace data in cache and memory (write-through)
— write the data only into the cache (write-back the cache later)

«  Write misses:
— read the entire block into the cache, then write the word

Hardware Issues

* Make reading multiple words easier by using banks of memory

—— Multplexor ———_
C_TT TT TT

Memory || Memory || Memory [| Memory
Dy bank 0 || bank 2 || bank 2 || bank3

Memory b. Wide memory organization c. Interleaved memory organization

a. One-word-wide
memory organization

e It can get alot more complicated...

10




Performance

* Increasing the block size tends to decrease miss rate:

40%

el .\
30%

Miss rate
N
]
b

15%

—

Block size (bytes)

m1KB
* 8KB
® 16 KB
®64 KB
#256 KB

e Use split caches because there is more spatial locality in code:

Block size in Instruction Data miss Effective combined
Program words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
|Spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4% 1n
Performance

e Simplified model:

execution time = (execution cycles + stall cycles) * cycle time

stall cycles = # of instructions ~ miss ratio ~ miss penalty

« Two ways of improving performance:

— decreasing the miss ratio
— decreasing the miss penalty

What happens if weincrease block size?

12




Set Associative Caches

e Basic Idea: a memory block can be mapped to more than one
location in the cache

e Cacheis divided into sets
« Each memory block is mapped to a particular set
e Each set can have more than one block
— Number of blocks in set = associativity of cache
— If aset has only one block, then it is a direct-mapped cache
* |.e. direct mapped caches have a set associativity of 1

« Each memory block can be placed in any of the blocks of the set to
which it maps

13

Direct mapped cache: block N mapsto ( N mod num of blocks
in cache)

Set associative cache: block N mapsto set (N mod num of setsin
cache)

Example below shows placement of block whose addressis 12

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
Ta . Tal Tal 1
g 2 g 2 g

search | search 1 | seach TTTT1T1T

14




Decreasing miss ratio with associativity

One-way set associative
(direct mapped)

Block Tag Data

0

Two-way set associative

Set Tag Data Tag Data

w N R o

N o oA w N e

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)
Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

LT T T T T T T T T T T T T T 71

Compared to direct mapped, give a series of references that:
— resultsin alower missratio using a 2-way set associative cache
— resultsin a higher missratio using a 2-way set associative cache
assuming we use the“ least recently used” replacement strategy

15

An implementation

Address
3130+.-+12111098.++.3210

FoT
:

Index V Tag Data V Tag Data V Tag Data V Tag Data

L
N
[N
L
w
N

1 | | ——
4-to-1 multiplexor
Hit Data

16




Performance

I )
One-way Two-way Four-way Eight-way
Associativity =1KB <+ 16KB
m2KB  *32KB
© 4KB = 64KB
* 8KB = 128KB

17

Set Associative Caches

* Advantages:

— Miss ratio decreases as associativity increases
» Disadvantages

— Extra memory needed for extra tag bits in cache
— Extra time for associative search

18




Block Replacement Policies

* What block to replace on a cache miss?

— We have multiple candidates (unlike direct mapped
caches)

— Random
— FIFO (First In First Out)
— LRU (Least Recently Used)

» Typically, cpus use Random or Approximate LRU
because easier to implement in hardware

19

Example

Cache size = 4 one word blocks

Replacement Policy = LRU

Sequence of memory references 0,8,0,6,8

Set associativity = 4 (Fully Associative); Number of Sets = 1

Address | Hit/Miss Set 0 Set 0 Set 0 Set 0

0 M 0

8 M 0 8

0 H 0 8

6 M 0 8 6

20




Example cont'd

Cache size =4 one word blocks
Replacement Policy = LRU

Sequence of memory references 0,8,0,6,8
Set associativity = 2 ; Number of Sets =2

Address | Hit/Miss Set 0 Set 0 Set 1 Set 1
0 M 0
8 M 0 8
0 H 0 8
6 M 0 6
8 M 8 6
21
Example cont’d
Cache size =4 one word blocks
Replacement Policy = LRU
Sequence of memory references 0,8,0,6,8
Set associativity = 1 (Direct Mapped Cache)
Address | Hit/Miss 0 1 2 3
0 M 0
8 M 8
0 M 0
6 M 0 6
8 M 8 6

22




Decreasing miss penalty with multilevel caches

* Add asecond level cache:
— often primary cache is on the same chip as the processor
— use SRAMSs to add another cache above primary memory (DRAM)
— miss penalty goes down if datais in 2nd level cache

« Example:
— CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
— Adding 2nd level cache with 20ns access time decreases miss rate to 2%

« Using multilevel caches:
— try and optimize the hit time on the 1st level cache
— try and optimize the miss rate on the 2nd level cache

23

Improvement factor

CPU (fast)

CPU (slow)

DRAM

24




14%

12%

10%

8%

6%

Miss rate per type

4%

2% Capacity

0% I 1 1 1 1 1 1
1 2 4 8 16 32 64 128

Cache size (KB)  m One-way M Four-way
Two-way ' Eight-way

25

Virtual Memory

* Main memory can act as a cache for the secondary storage (disk)

Virtual addresses Physical addresses
Address translation

TRV

Disk addresses

« Advantages:
— illusion of having more physical memory
— program relocation
— protection

26




Recall: Each MIPS program has an address
space of size 232bytes

—
$sp Tfff ffff hex Stack

|

Dynamic data

$gp —*> 10008000 | Static data

1000 0000  pex
Text
pc —* 0040 0000

hex

Reserved

27

Pages: virtual memory blocks

« Page faults: the datais not in memory, retrieve it from disk
— huge miss penalty, thus pages should be fairly large (e.g., 4KB)
— reducing page faults is important (LRU is worth the price)
— can handle the faults in software instead of hardware
— using write-through is too expensive so we use writeback

Virtual address
3130292827 ....iiiinnn 15141312 111098 ...... 3210

[ e | oo |

292827 ....fieians 15141312 111098 .J|.... 3210

| Physical page number Page offset |

Physical address

28




Page Tables

Virtual page
number
Page table vsical
Physical page or Physical memory
Valid  disk address
1 ~—_
T —
1 —
1 C—
0 -
1 LN
1
0 4
1 & XL Disk storage
1 7 L
0 [ e~
1 < | —
[ Page table register |
Virtual address
313020 28 27 vreeereeenenien 151413 121110 9 8 « -+ -+ 3210
| Virtual page number l Page offset
20 12
Valid Physical page number
Page table
18
If 0 then page is not
present in memory
29 28 27 +eveveeveeeeeeeealees 1514131211100 8-f--- 3210
Physical page number Page offset

Physical address




Making Address Translation Fast

* A cache for address translations: translation lookaside buffer

TLB
Virtual page Physical page
number  Valid  Tag address

Physical memory

anala

Page table
Physical page

Valid or disk address
1 r
1 -—
1 — Disk storage
1 e L
0 —] Mee—o A
- —
1 «
A |
I (e
1 4 S
[
1 4

31

TLBs and caches

Virtual address

TLB miss

exception Physical address

Write?

Try to read data

from cache Write access

biton?
Write protection i
exception Write data into cache,
update the tag, and put
Cache miss stall the data and the address
into the write buffer
Deliver data
to the CPU

32




Modern Systems

Very complicated memory systems:

Characteristic

Intel Pentium Pro

PowerPC 604

|Virtual address 132 bits 52 bits
|Physical address |32 bits 32 bits
|Page size 4 KB. 4 MB 4 KB, selectable, and 256 MB

TLB organization
Pseudo-LRU

Data TLB: 64

A TLB for instructions and a TLB for data
Both four-way set associative

Instruction TLB: 32 entries

TLB misses handled in hardware

Both
replacement LRU

entries Data

A TLB for instructions and a TLB for data

two-way set associative
replacement

Instruction TLB: 128 entries

TLB: 128 entries

TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches |Split intruction and data caches
|Cache size 8 KB each for instructions/data |16 KB each for instructions/data |
|Replacement  lApproximated LRU replacement {LRU replacement |
Block size 32 bytes 32 bytes
|Write policy Write-back Write-back or write-through |

33

Some Issues

* Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

e Design challenge: dealing with this growing disparity

e Trends:

— synchronous SRAMs (provide a burst of data)

— redesign DRAM chips to provide higher bandwidth or processing

— restructure code to increase locality
— use prefetching (make cache visible to ISA)




