
1

Chapter Seven

2

• SRAM:
– value is stored on a pair of inverting gates
– very fast but takes up more space than DRAM (4 to 6 transistors)

• DRAM:
– value is stored as a charge on capacitor (must be refreshed)
– very small but slower than SRAM (factor of 5 to 10)

Memories: Review

3

• Users want large and fast memories!

SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per Mbyte.

• Try and give it to them anyway
– build a memory hierarchy

Exploiting Memory Hierarchy

1997

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
from the CPU in

access time

Size of the memory at each level

4

Locality

• A principle that makes having a memory hierarchy a good idea

• If an item is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

• Our initial focus: two levels (upper, lower)
– block: minimum unit of data
– hit: data requested is in the upper level
– miss: data requested is not in the upper level

5

• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped"

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache

6

• Mapping: address is modulo the number of blocks in the cache

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a ch e

M e m o ry

00
1

01
0

01
1

10
0

10
1

11
0

11
1

7

• For MIPS:

What kind of locality are we taking advantage of?

Direct Mapped Cache

A ddress (sh ow ing b it pos itio ns)

20 10

Byte
o ffse t

V alid T ag D ataIndex

0
1
2

1021
1022
1023

Tag

Index

H it D ata

20 32

31 30 13 12 11 2 1 0

8

• Taking advantage of spatial locality:

Direct Mapped Cache

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

9

• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, deliver to cache, restart

• Write hits:
– can replace data in cache and memory (write-through)
– write the data only into the cache (write-back the cache later)

• Write misses:
– read the entire block into the cache, then write the word

Hits vs. Misses

10

• Make reading multiple words easier by using banks of memory

• It can get a lot more complicated...

Hardware Issues

CPU

Cache

Bus

Memory

a. One-word -wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multip lexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

11

• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code:

Performance

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

12

Performance

• Simplified model:

execution time = (execution cycles + stall cycles) ×cycle time

stall cycles = # of instructions ×miss ratio ×miss penalty

• Two ways of improving performance:
– decreasing the miss ratio
– decreasing the miss penalty

What happens if we increase block size?

13

Set Associative Caches

• Basic Idea: a memory block can be mapped to more than one
location in the cache

• Cache is divided into sets
• Each memory block is mapped to a particular set
• Each set can have more than one block

– Number of blocks in set = associativity of cache
– If a set has only one block, then it is a direct-mapped cache

• I.e. direct mapped caches have a set associativity of 1
• Each memory block can be placed in any of the blocks of the set to

which it maps

14

1
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1
2

Tag

Data

Search

Fully associative

Direct mapped cache: block N maps to (N mod num of blocks
in cache)

Set associative cache: block N maps to set (N mod num of sets in
cache)

Example below shows placement of block whose address is 12

15

Compared to direct mapped, give a series of references that:
– results in a lower miss ratio using a 2-way set associative cache
– results in a higher miss ratio using a 2-way set associative cache

assuming we use the “least recently used” replacement strategy

Decreasing miss ratio with associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

16

An implementation
A d dr ess

2 2 8

V T a gInd ex
0
1
2

2 5 3
2 5 4
2 5 5

D ata V T a g D a ta V T ag D a ta V T ag D a ta

3 22 2

4 - to - 1 m u ltip le xo r

H it D a ta

12389101 11 23 031 0

17

Performance

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

Associativity 16 KB
32 KB
64 KB
128 KB

18

Set Associative Caches

• Advantages:
– Miss ratio decreases as associativity increases

• Disadvantages
– Extra memory needed for extra tag bits in cache
– Extra time for associative search

19

Block Replacement Policies

• What block to replace on a cache miss?
– We have multiple candidates (unlike direct mapped

caches)
– Random
– FIFO (First In First Out)
– LRU (Least Recently Used)

• Typically, cpus use Random or Approximate LRU
because easier to implement in hardware

20

Example
Cache size = 4 one word blocks
Replacement Policy = LRU
Sequence of memory references 0,8,0,6,8
Set associativity = 4 (Fully Associative); Number of Sets = 1

680H8

680M6

80H0

80M8

0M0

Set 0Set 0 Set 0Set 0Hit/MissAddress

21

Example cont’d
Cache size = 4 one word blocks
Replacement Policy = LRU
Sequence of memory references 0,8,0,6,8
Set associativity = 2 ; Number of Sets = 2

68M8

60M6

80H0

80M8

0M0

Set 1Set 1Set 0Set 0Hit/MissAddress

22

Example cont’d
Cache size = 4 one word blocks
Replacement Policy = LRU
Sequence of memory references 0,8,0,6,8
Set associativity = 1 (Direct Mapped Cache)

68M8

60M6

0M0

8M8

0M0

3210Hit/MissAddress

23

Decreasing miss penalty with multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as the processor
– use SRAMs to add another cache above primary memory (DRAM)
– miss penalty goes down if data is in 2nd level cache

• Example:
– CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
– Adding 2nd level cache with 20ns access time decreases miss rate to 2%

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache
– try and optimize the miss rate on the 2nd level cache

24

I m
p

ro
v

e
m

e
n

t
fa

c
to

r

1

10

1 0 0

1 9 8 0
1 98 2

19 8 4
1 98 6

Y e a r

1 98 8
1 99 0

1 9 9 2
1 9 9 4

19 9 6

C P U (fa s t)

C P U (s lo w)

D R A M

25

2
0%

M
is

s
ra

te
pe

r t
yp

e

2%

4%

6%

8%

10%

12%

14%

1 4 8 16 32 64 128

One-way
Two-way

Cache size (KB) Four-way
Eight-way

Capacity

26

Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

• Advantages:
– illusion of having more physical memory
– program relocation
– protection

Physical addresses

Disk addresses

Virtual addresses
Address translation

27

$sp

$gp

0040 0000 hex

0

1000 0000 hex

Text

Static data

Dynamic data

Stack7fff ffff hex

1000 8000
hex

 pc

Reserved

Recall: Each MIPS program has an address
space of size 232 bytes

28

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important (LRU is worth the price)
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

29

Page Tables

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

30

Page Tables

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

31

Making Address Translation Fast

• A cache for address translations: translation lookaside buffer

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

32

TLBs and caches

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

33

Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

34

• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge: dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)
– redesign DRAM chips to provide higher bandwidth or processing
– restructure code to increase locality
– use prefetching (make cache visible to ISA)

Some Issues

