Chapter Six
Pipelining

Pipelining

 Improve perfomance by increasing instruction throughput

Program
execution . 2 4 6 8 10 12 14 10 18
order Time T T T T T T T T >
(in instructions)
Instruction Data
Iw $1, 100($0) fetch | R€9| ALY access | \°9
- —®Instruction Data
Iw $2, 200($0) 8 ns fetch Reg ALU access Reg
<« —|Instruction
Iw $3, 300($0) 8ns fetch
— s
8ns
Program
execution) 2 4 6 8 10 12 1
Time —»>
order ! ' ' I I I I
(in instructions)
Instruction Data
Iw $1, 100($0) fetch Reg ALU access | R°Y
<“—P{Instruction Data
Iw $2, 200($0) 2ns fetch Reg| ALU access | 9
<+—™|Instruction Data
Iw $3, 300($0) 2ns fotch Reg| ALU | es | REY
2ns 2ns 2ns 2ns 2ns

| deal speedup is number of stagesin the pipeline. Do we achieve this?

Pipelining

« What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

« What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

« We'll build a simple pipeline and look at these issues

« We’'ll talk about modern processors and what really makes it hard:
— exception handling
— trying to improve performance with out-of-order execution, etc.

Basic Ildea

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation
0
M
u
X
1
Add reégl?
Shift
left 2
Read
Address register 1 Read
Read data 1
Instruction regis‘erRzegisters ALU zero
nsf Read
Write datzaz 0 reétlLtJ Address %e?d 1
Instryction register ’\L/,l Data o M
merpory ggrti;e L ; memory g
Write 0
data
16 /\32
Sign

* What do we need to add to actually split the datapath into stages?

Pipelined Datapath

/ / EX/MEM EM/WB
Add gyt
Shift
left 2
ad
gister
—
ead
ister Zero —
| — gisters Read| | | Lol ./ ALV AL
v ite 0 result dd ad
ister M data
w u
i X
data 1 4

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Datapath

b

rory

Read
data

MEMWB

0
M
u
X
1
IFID ID/EX EXIMEM
Add
Add
4 Add result
Shift
left 2
5 Read
Address g register 1 Read
2 datal
. 2 rFéZ?gter 2 <0 ~
Instriction L L= Registers Read AU ALY
memory Wite data 2 0 resutt Address
register M
u
Wite X
data L
Wite
/-_\ data
16 2
Sign —
@

Oxczr

Graphically Representing Pipelines

Time (in clock cycles) —>

Program

) CC1 CC2 CC3 CC4 CC5 CC6
execution

order — — —
(in instructions) \
Iw $10, 20($1) IM Reg : :>ALU— DM — — REg
L L I——I

sub $11, $2, $3 M — FH Reg [| [> ALU— Ti?l:l‘ Reg
v
L L~ L

 Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 4?
— use this representation to help understand datapaths

Pipeline Control

xecxg ©

fiN

e |

IF/ID

ID/EX

Add

|

Address

Instruction
memory

Read

register 1

Read data 1

l Instruction

register 2
Registers Read

Write data 2

register

Write

Read[__,]

data

Instruction
[15-0] 1{5 sign

\ | extend

Instruction
[20-16]

Shift
left 2

Add
result

EXIMEM

s

Instruction
[15-11]

Address

Data
memory

Write

data

Read
data

MEM/WB

(5 x==°)

Oxcz®

Pipeline control

« We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

« How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?

Pipeline Control

Pass control signals along just like the data

Execution/Address Calculation | Memory access stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg ([Mem to

Instruction Dst Opl Op0 Src__[Branch| Read | Write | write Reg
R-format 1 1 0 0 0 0 0 1 0
| w 0 0 0 1 0 1 0 1 1
SwW X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Instructio_n>

IF/ID ID/EX EX/IMEM MEM/WB

10

Datapath with Control

0 ID/EX
M
M EXIMEM
1
-
L MEM/WB
IF/ID
Add
4
3 s
PC—$—>{ Address b= register
E deet
Instruction = register 2
memor] __ Registers Read|
y Write data 2 Address Readi | [—
register Data data
Write memory
| data
> »| Write
data
Instruction
16 32 6
[15-0] & égn\ \ \
N Tlextend] N
Instruction
[20-16] 5
M
Instruction ;‘
1

OXCZ"‘

Dependencies

 Problem with starting next instruction before first is finished
— dependencies that “ go backward in time” are data hazards

Time (in clock cycles)
CcCc1
10

Value of
register $2:

Program
execution
order

(in instructions)

, $1, $3

sub

and $12, $2, $5

or $13, $6,

add $14,

sw $15, 100

CC3
10

cca CCs5 CC6 cc7 ccs
10 10/-20 -20 -20 -20
o
%_ DM -—_— Reg
===
JI[] %—J—[DM— — Reg
M —_JI_ _%—_ _— Reg

7,

CC9
-20

12

Software Solution

« Have compiler guarantee no hazards
« Where do we insert the “nops” ?

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
SW $15, 100($2)

 Problem: this really slows us down!

13

Forwarding

« Use temporary results, don’t wait for them to be written
— regqister file forwarding to handle read/write to same register
— ALU forwarding

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CCo6 cCc7 CcCs8 CC9

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program
execution order

(in instructions)]]] -
sub $2, $1,$3 | IM Reg| | E I— —|:DM—

and $12, $2, $5]| = H DM H Reg
— % [=£h

or $13, $6, IM JI[] “‘D— —[DM— {Rkg

o] B— —[DM— - Reg

sw $15, 100 IM [-E[] %— TiT_H—Reg

what if this $2 was $137?

add $14, $2, IM —

14

Forwarding

ID/EX
EX/MEM
e
MEM/WB
IF/ID
= M
S u
e X
5
5 —>
@ Registers _/
Instruction < Data
PC! L _—— ALU >
memory memory
M
—>| U >
X
IF/ID.RegisterRs Rs >
IF/ID.RegisterRt Rt
, (O M
IF/ID.RegisterRt Rt)
> M EX/MEM.RegisterRd
IF/ID.RegisterRd Rd u >
» X
L | L | _J L | L
> MEMMB .RegisterRd

Can't always forward

e Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction
that writes to the same register.

Time (in clock cycles)

Program CC1 CC2 CC3
execution
order
(in instructions)]
Iw $2, 20($1) | IM Reg| |
and $4, $2, $5 IM J:l:]
or $8, $2, $6 IM
add $9, $4,
slt $1, $6, $7

CCo9

Reg

ccs CcCé cc7 ccs
DM | :,

==l

AB- —[DM — Reg

B H 457 —[DM— — Reg

e Thus, we need a hazard detection unit to “ stall” the load instruction

16

Stalling

« We can stall the pipeline by keeping an instruction in the same stage

Program Time (in clock cycles)

execution CC1 CC2 CcC3 CC4 CC5 CC6 CC7 cCs8 CCo9 CCc 10
order

(in instructions) — — —
Iw $2, 20($1) M «H-EReg: % _[DM_

]
and 54, 57,85 —_{ Q_p_:lgk_ﬂ—r_ K
I

or $8, $2, $6 IM IM %— -[DM— 1 Reg
— bubble —-> — — — _

add $9, $4, IM E[49— —[DM— | Reg
slt $1, $6, $7 IM 1 [rRegl] %* wiltH—Rag

[
| [
1

Hazard Detection Unit

« Stall by letting an instruction that won’t write anything go forward

ID/EX

I

EX/MEM

MEM/WB

IF/ID

2 egisters Data
Instruction ALU - |
=]
PC memory memory M
u
M X
> u
X

IF/ID.RegisterRs

L]

| Instruction

|IF/ID.RegisterRt N\

IF/ID.RegisterRt Rt M EX/MEM.RegisterRd

IF/ID.RegisterRd Rd

ID/EX RegisterRt Rs] ~ MEM/WB RegisterRd
R ’

18

Branch Hazards

When we decide to branch, other instructions are in the pipeline!

Time (in clock cycles)
CcC1 Ccc2

Program
execution
order

(in instructions)

40 beq $1, $3, 7 nn I H%ll.’

CC3

44 and $12, $2, $5

48 or $13, $6, $2

[mH

52 add $14, $2, $2

iy
L5

72 lw $4, 50($7)

We are predicting “ branch not taken”

I,
J:EF

— need to add hardware for flushing instructions if we are wrong

19

Flushing Instructions

xcZ

IF/ID

Instruction
memory

ID/IEX

EX/MEM
M
u
0 X MEM/WB
+ 4
Shift
left 2 N\
M
i | u
X
—1—>
Registers A/ Dat
ALY ata L b L
memory M
\ u
M X
p—>| u
X
N\
Sign
extend
m >
u
L J X S S
\ J U |

20

Improving Performance

« Try and avoid stalls! E.g., reorder these instructions:

lw $t0, O(S$t1)
lw $t2, 4($t1)
sw $t2, 0O($t1)
sw $t0, 4($t1)

« Add a“branch delay slot”
— the next instruction after a branch is always executed
— rely on compiler to “fill” the slot with something useful

e Superscalar: start more than one instruction in the same cycle

21

Dynamic Scheduling

« The hardware performs the “ scheduling”

— hardware tries to find instructions to execute

— out of order execution is possible

— speculative execution and dynamic branch prediction
 All modern processors are very complicated

— DEC Alpha 21264: 9 stage pipeline, 6 instruction issue

— PowerPC and Pentium: branch history table

— Compiler technology important

 This class has given you the background you need to learn more

22

