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Chapter Six
Pipelining
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Pipelining

• Improve perfomance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline.  Do we achieve this?
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Pipelining

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards:   suppose we had only one memory
– control hazards:  need to worry about branch instructions
– data hazards:  an instruction depends on a previous instruction

• We’ll build a simple pipeline and look at these issues

• We’ll talk about modern processors and what really makes it hard:
– exception handling
– trying to improve performance with out-of-order execution, etc.
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Basic Idea

• What do we need to add to actually split the datapath into stages?
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Pipelined Datapath

Can you find a problem even if there are no dependencies?  
What instructions can we execute to manifest the problem?
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Corrected Datapath
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Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths
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Pipeline Control
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• We have 5 stages.  What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

• How would control be handled in an automobile plant?
– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline control
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• Pass control signals along just like the data

Pipeline Control
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Datapath with Control
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• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards
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• Have compiler guarantee no hazards
• Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem:  this really slows us down!

Software Solution
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• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding

Forwarding
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Forwarding
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• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction 

that writes to the same register.

–

• Thus, we need a hazard detection unit to “stall” the load instruction
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Stalling

• We can stall the pipeline by keeping an instruction in the same stage
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Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward
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• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong
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Flushing Instructions
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Improving Performance

• Try and avoid stalls!  E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar:  start more than one instruction in the same cycle
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Dynamic Scheduling

• The hardware performs the “scheduling” 
– hardware tries to find instructions to execute
– out of order execution is possible
– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– DEC Alpha 21264:  9 stage pipeline, 6 instruction issue
– PowerPC and Pentium:  branch history table
– Compiler technology important

• This class has given you the background you need to learn more


