Interfacing I/O devices to the Memory, Processor, and Operating System

- How is a user I/O request transformed into a device command and communicated to the device?
 - E.g., file read/write, mouse movement, keyboard stroke
- How is data actually transferred to or from a memory location?
- What is the role of the operating system?

20

Operating System Responsibilities wrt I/O system

- · Characteristics of I/O devices
 - Shared by multiple programs
 - Interrupt driven
 - Low-level control is complex
- OS functions
 - Must provide protection
 - E.g. must not allow file owned by one user to be deleted by another user
 - Must provide abstractions for accessing device
 - E.g. file abstraction for a collection of blocks on disk
 - Must handle interrupts
 - Must try to provide "fairness" in accessing I/O devices
 - Must try and manage I/O devices so that throughput is maximized

Communication between I/O devices and the OS

- To perform its functions wrt I/O system, the operating system must be able to communicate with I/O devices and to prevent user programs from accessing the I/O devices directly
- Three types of communication
 - OS must be able to give commands to I/O devices
 - A device must be able to notify the OS when it has completed a command or if there is an error
 - Data must be transferred between the I/O device and memory

22

Giving commands to I/O devices

- CPU must be able to address the device and to supply one or more commands
- Two methods for addressing the device
 - Memory-mapped I/O
 - Portions of a program's address space are assigned to I/O devices
 - Reads and writes to these addresses are interpreted as commands to the device
 - These memory addresses are not directly accessible to user programs
 - Special I/O instructions
 - I/O instructions can specify both the device number and the command word (or the location of the command word in memory)
 - I/O instructions can only be executed by the operating system

Communication with the Processor

- · Two methods
 - Polling
 - Device status bits are periodically checked to see if it is time for the next I/O operation
 - Interrupt-driven I/O
 - Device delivers interrupt to the CPU when it requires attention
 - Interrupts are like exceptions except that they are not associated with any instruction
 - CPU can check before starting a new instruction if an interrupt has been delivered
 - Interrupt-handling: Can be vectored or can use a Cause register (Recall Exception-handling from Chapter 5)

24

Polling vs Interrupt-driven I/O

Assume that the number of clock cycles for a polling operation is 100. For a processor executes at 50 MHz, what is the overhead of polling

- 1. For a mouse that is polled 30 times per second?
- 2. For a floppy disk that transfers data to the processor in 16-bit units and has a data transfer rate of 50 KB/second?
- 3. For a hard disk transferring data in 1 word chunks at 2 MB/sec?

For the mouse

clock cycles used per second for polling = $30 \times 100 = 300$ Fraction of processor cycles used for polling = $3000/(50 \times 10^6)$ = 0.006%

Polling vs Interrupt-driven I/O

cont'd

For the floppy drive

Number of polling operations per second

(if we don't want to lose data) = (50 KB/sec) / (2 bytes/access)

= 25 K polling accesses per second

Clock cycles for polling = 25 K X 100 = 25 X 1024 X 100

= 25.6 X 10⁵ clock cycles per second

Fraction of CPU cycles = $(25.6 \times 10^5) / (50 \times 10^6) = 5\%$

For the hard disk

Rate of polling = (2 MB/sec)/ (4 bytes per access)

= 500 K polling accesses per second

Clock cycles = 500 K X 100 = 51.2 X 106

Fraction of CPU cycles = 51.2 X 10⁶/ 50 X 10⁶ = 100%!!!!

26

Polling vs Interrupt-driven I/O

cont'd

• Suppose overhead of interrupt handling is 100 clock cycles. How much overhead when floppy disk is active?

Rate of interrupts = (50 KB/sec) / (2 bytes/interrupt)

= 25 K interrupts per second

Clock cycles for handling interrupts

= 25 K X 100 = 25 X 1024 X 100

= 25.6 X 10⁵ clock cycles per second

Fraction of CPU cycles = $(25.6 \times 10^5) / (50 \times 10^6) = 5\%$

The difference from polling is that 5% of the CPU cycles per second are used for handling interrupts <u>only if</u> the floppy is busy

At other times, overhead is 0%. For polling, the overhead is <u>always</u> 5%

Transferring data between device and memory

- Two methods
 - Interrupt-driven I/O
 - · Processor is involved in data transfer
 - Problem: 100% overhead in the case of the hard disk example
 - Direct Memory Access (DMA)
 - Data is transferred directly from the device to memory (or vice versa)
 - · Processor is involved only in
 - 1. Initiating the DMA transfer
 - 2. Handling interrupt at the end of DMA transfer

28

DMA

- Implemented with special controller that transfers data between memory and I/O device independent of the processor
- Three steps in DMA transfers
 - Processor sets up the DMA transfer by supplying identity of device, operation to perform, memory address that is source or destination of data, number of bytes to be transferred
 - DMA controller starts the operation (arbitrates for the bus, supplies address, reads or writes data), until the entire block is transferred
 - 3. DMA controller interrupts the processor, which then takes the necessary actions

Hard disk DMA example

Find overhead for using DMA for data transfer from a hard disk. Assume initial DMA setup = 1000 cycles Interrupt handling on DMA completion = 500 cycles Average size of data transfer = 4 KB

Each DMA transfer takes (4 KB)/(2 MB/sec) = 2 X 10^{-3} seconds CPU cycles used for DMA transfer = 1000 + 500 = 1500Total CPU cycles during DMA transfer = $(50 \times 10^6) \times (2 \times 10^{-3})$ = 100×10^3 Fraction of CPU cycles used for DMA = $1500 / 100 \times 10^3$ = 1.5 %