
1

20

Interfacing I/O devices to the Memory, Processor, and
Operating System

• How is a user I/O request transformed into a device
command and communicated to the device?
– E.g., file read/write, mouse movement, keyboard

stroke
• How is data actually transferred to or from a memory

location?
• What is the role of the operating system?

21

Operating System Responsibilities wrt I/O system

• Characteristics of I/O devices
– Shared by multiple programs
– Interrupt driven
– Low-level control is complex

• OS functions
– Must provide protection

• E.g. must not allow file owned by one user to be deleted by another
user

– Must provide abstractions for accessing device
• E.g. file abstraction for a collection of blocks on disk

– Must handle interrupts
– Must try to provide “fairness” in accessing I/O devices
– Must try and manage I/O devices so that throughput is

maximized

2

22

Communication between I/O devices and the OS

• To perform its functions wrt I/O system, the operating
system must be able to communicate with I/O
devices and to prevent user programs from
accessing the I/O devices directly

• Three types of communication
– OS must be able to give commands to I/O devices
– A device must be able to notify the OS when it has

completed a command or if there is an error
– Data must be transferred between the I/O device

and memory

23

Giving commands to I/O devices

• CPU must be able to address the device and to supply one or
more commands

• Two methods for addressing the device
– Memory-mapped I/O

• Portions of a program’s address space are assigned to I/O devices
• Reads and writes to these addresses are interpreted as commands to

the device
• These memory addresses are not directly accessible to user programs

– Special I/O instructions
• I/O instructions can specify both the device number and the command

word (or the location of the command word in memory)
• I/O instructions can only be executed by the operating system

3

24

Communication with the Processor

• Two methods
– Polling

• Device status bits are periodically checked to see if it is time for
the next I/O operation

– Interrupt-driven I/O
• Device delivers interrupt to the CPU when it requires attention
• Interrupts are like exceptions except that they are not

associated with any instruction
• CPU can check before starting a new instruction if an interrupt

has been delivered
• Interrupt-handling: Can be vectored or can use a Cause

register (Recall Exception-handling from Chapter 5)

25

Polling vs Interrupt-driven I/O

Assume that the number of clock cycles for a polling operation is
100. For a processor executes at 50 MHz, what is the
overhead of polling

1. For a mouse that is polled 30 times per second?
2. For a floppy disk that transfers data to the processor in 16-bit

units and has a data transfer rate of 50 KB/second?
3. For a hard disk transferring data in 1 word chunks at 2

MB/sec?

For the mouse
clock cycles used per second for polling = 30 x 100 = 300
Fraction of processor cycles used for polling = 3000/(50 X 106)

= 0.006%

4

26

Polling vs Interrupt-driven I/O cont’d

For the floppy drive
Number of polling operations per second
(if we don’t want to lose data) = (50 KB/sec) / (2 bytes/access)

= 25 K polling accesses per second
Clock cycles for polling = 25 K X 100 = 25 X 1024 X 100

= 25.6 X 105 clock cycles per second
Fraction of CPU cycles = (25.6 X 105) / (50 X 106) = 5%

For the hard disk
Rate of polling = (2 MB/sec)/ (4 bytes per access)

= 500 K polling accesses per second
Clock cycles = 500 K X 100 = 51.2 X 106

Fraction of CPU cycles = 51.2 X 106/ 50 X 106 = 100% !!!!

27

Polling vs Interrupt-driven I/O cont’d

• Suppose overhead of interrupt handling is 100 clock cycles.
How much overhead when floppy disk is active?

Rate of interrupts = (50 KB/sec) / (2 bytes/interrupt)
= 25 K interrupts per second

Clock cycles for handling interrupts
= 25 K X 100 = 25 X 1024 X 100
= 25.6 X 105 clock cycles per second

Fraction of CPU cycles = (25.6 X 105) / (50 X 106) = 5%
The difference from polling is that 5% of the CPU cycles per

second are used for handling interrupts only if the floppy is
busy

At other times, overhead is 0%. For polling, the overhead is
always 5%

5

28

Transferring data between device and memory

• Two methods
– Interrupt-driven I/O

• Processor is involved in data transfer
• Problem: 100% overhead in the case of the hard disk example

– Direct Memory Access (DMA)
• Data is transferred directly from the device to memory (or vice

versa)
• Processor is involved only in

1. Initiating the DMA transfer
2. Handling interrupt at the end of DMA transfer

29

DMA

• Implemented with special controller that transfers data between
memory and I/O device independent of the processor

• Three steps in DMA transfers
1. Processor sets up the DMA transfer by supplying identity of

device, operation to perform, memory address that is
source or destination of data, number of bytes to be
transferred

2. DMA controller starts the operation (arbitrates for the bus,
supplies address, reads or writes data), until the entire
block is transferred

3. DMA controller interrupts the processor, which then takes
the necessary actions

6

30

Hard disk DMA example

Find overhead for using DMA for data transfer from a hard disk.
Assume initial DMA setup = 1000 cycles
Interrupt handling on DMA completion = 500 cycles
Average size of data transfer = 4 KB

Each DMA transfer takes (4 KB)/(2 MB/sec) = 2 X 10-3 seconds
CPU cycles used for DMA transfer = 1000 + 500 = 1500
Total CPU cycles during DMA transfer = (50 X 106) X (2 X 10-3)

= 100 X 103

Fraction of CPU cycles used for DMA = 1500 / 100 X 103

= 1.5 %

