

AN EVALUATION OF MUTATION OPERATORS FOR

EQUIVALENT MUTANTS

By

Maryam Umar

Supervised
By

Mark Harman

A project submitted to the Department of Computer Science.

King’s College, London.

In partial fulfilment of the requirement for the degree of Msc in Advanced
Software Engineering.

Department of Computer Science
King’s College, London.

1st September 2006

ACKNOWLEDGEMENTS

I started this project at a point in my life when I faced numerous new responsibilities. Being a newly
wed, doing an MSc seemed close to impossible. But I firmly believe that if one wishes, the
impossible can be achieved. The idea for this project occurred to me during one of my lectures of
Advanced Software Engineering. I wondered why is it so impossible to get rid of this issue being
faced in mutation testing. It was at this point that I approached Mark Harman with the proposition to
work on the problem of equivalent mutants. I was told that that I might face a number of issues
whilst working on this project. Indeed, I did.

I can never thank my parents enough to help me get over those horrible days when I couldn’t get
my software up and running. It took me the longest time to take the first step in doing this project. I
want to thank Dr. Jeff Offutt, whose little, but very important guidance helped me take this step.

I would have never been able to gather all the strength and courage to complete this project
without the continuous help of my husband, Umar. I also want to thank Kostas Adamopoulos who
provided me with some essential literature to study for this thesis. And ofcourse, I can never forget
the gentle pushes giving by my supervisor, Mark Harman, into what we jokingly called the
swimming pool of mutation testing. Thanks to Mark for teaching me how to swim.

Most importantly, I want to thank the Divine Power that has made me capable of putting all this
together.

 2

ABSTRACT

Software testing allows programmers to determine the quality of the software. Mutation testing
is a branch of software testing which does more than this. It helps determine whether the test
cases that have been created, effectively detect all the possible faults in the software. This allows
the development of better test sets, thus, ensuring that maximum software quality is achieved. This
may seem very inviting to software testers, but there is a major issue being faced which has
hindered the widespread use of mutation testing.

Mutation testing works by seeding faults in the software program. Various mutation operators
are used to create these faulty programs. These programs are called mutants. The mutants depict
software faults that may be caused by programmers while writing the software. Test cases are then
executed on these mutants to determine if they have been killed or not. Test sets that kill all the
mutants are considered to be good as they successfully detect all the possible program faults.

Sometimes, it is difficult to kill all the mutants. The reason is that some of the mutants, although
syntactically different than the original program, are still semantically the same. Any test case will
not be able to differentiate between the original program and the mutant. Such mutants are called
equivalent mutants.

This thesis targets this issue by determining which mutation operators create mutants, which
are more probable to create equivalent mutants. A tool called MuJava is used for this purpose. An
empirical analysis has been carried out for this purpose, which helps determine which mutation
operators develop more equivalent mutants.

 3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... 2
ABSTRACT... 3
TABLE OF CONTENTS.. 4
1. INTRODUCTION ... 6

1.1 Mutation Testing ... 6
2. LITERATURE REVIEW ... 8

2.1 ‘Do Smarter’ approaches.. 8
2.2 ‘Do Faster’ approaches .. 9
2.3 ‘Do Fewer’ approaches... 9
2.4 Techniques ... 10
2.5 Tools... 14

3. STRATEGY ADOPTED FOR THIS PROJECT ... 15
3.1 MuJava ... 15
3.2 Motivation ... 15
3.3 The Strategy ... 16

4. METHOD-LEVEL MUTATION OPERATORS ... 17
4.1 Arithmetic Operators... 17
4.2 Relational Operators... 18
4.3 Conditional Operators... 18
4.4 Shift Operators ... 18
4.5 Logical Operators ... 18
4.6 Assignment Operators.. 19

5. CLASS-LEVEL MUTATION OPERATORS ... 20
5.1 Encapsulation ... 20
5.2 Inheritance.. 21
5.3 Polymorphism... 23
5.4 Java-specific Features.. 25

6. EMPIRICAL ANALYSIS... 27
6.1 Method-level Mutation Operators ... 27
6.2 Class-level Mutation Operators .. 29

7. AN EVALUATION OF EQUIVALENT MUTANTS.. 33
7.1 Evaluation of Method-level Mutation Operators ... 33
7.2 Evaluation of Class-level Mutation Operators .. 36

8. CONCLUSION AND FUTURE WORK .. 44
APPENDIX A – USER GUIDE for MuJava ... 45
APPENDIX B – Programs written for MuJava (source code) ... 50
REFERENCES ... 98
BIBLIOGRAPHY ... 99

 4

LIST OF FIGURES

Figure 1: Process of Mutation testing ... 7
Figure 2: Example of Equivalent Mutants ... 8
Figure 3: Example of Weak Mutation.. 9
Figure 4: Example of Schema-based mutation analysis... 9
Figure 5: Sample program to show strategy using program slicing to detect equivalent mutants .. 11
Figure 6: Example of mutant created for use with program slicing ... 12
Figure 7: Introduction of Boolean variable z in p’ & the creation of a program slice using z........... 12
Figure 8: Creation of an amorphous slice from a traditional program slice for the detection of

equivalent mutants... 12
Figure 9: Common Sub-expression Detection Example ... 13
Figure 10: Structure of MuJava [6] ... 15
Figure 11: Number of Mutants killed by Method-level Operators.. 28
Figure 12: Number of Mutants (excluding AOIS) killed by Method-level Operators........................ 28
Figure 13: Percentage of live mutants created by operator AOIS .. 29
Figure 14: Structure of programs used for Class-level operators ... 29
Figure 15: Percentage of mutants incurring failure created by PRV... 31
Figure 16: Number of Mutants killed by Class-level Operators... 31
Figure 17: Number of Mutants killed by Class-level Operators excluding PRV 31
Figure 18: Evaluation of Method-level Operators AORB, AOIU, ROR, COR & COI....................... 33
Figure 19: Evaluation of Method-level Operators SOR, LOR, LOI & ASRS 34
Figure 20: Evaluation of Method-level Operator AOIS.. 34
Figure 21: Equivalent Mutants for method-level operator AOIS ... 35
Figure 22: Scenario in which AOIS creates non-equivalent and equivalent mutants 36
Figure 23: Evaluation of Class-level Operators IHD, IHI, IOD, IOP, IOR & ISI 36
Figure 24: Evaluation of Class-level Operators ISD, IPC, PNC, PMD, PPD & PCI 37
Figure 25: Evaluation of Class-level Operators OMR, OMD, OAN, JTI & JTD............................... 38
Figure 26: Evaluation of Class-level Operators JSI, JID, JDC, EOC, EAM & EMM........................ 38
Figure 27: Evaluation of Class-level Operator PRV.. 39
Figure 28: Scenario in which IHD creates equivalent mutants ... 41
Figure 29: Scenario in which IHI creates equivalent mutants ... 41
Figure 30: Scenario in which PRV creates equivalent mutants .. 42
Figure 31: Scenario in which JID creates equivalent mutants .. 42
Figure 32: Scenario in which JID will never create an equivalent mutant 42
Figure 33: Scenario in which JDC creates equivalent mutant .. 43
Figure 34: Scenario in which JDC will never create an equivalent mutant 43
Figure 35: Creating Mutants using MuJava .. 46
Figure 36: Class Mutants Viewer in MuJava... 47
Figure 37: Traditional Mutants Viewer in MuJava... 47
Figure 38: Killing Mutants using MuJava .. 49

LIST OF TABLES

Table 1: Method-level operators in MuJava.. 17
Table 2: Class-level operators in MuJava... 20
Table 3: Number of Mutants for Method-level Operators.. 27
Table 4: Number of Mutants for Class-level Operators... 30
Table 5: Analysis Summary of Method-level Mutation Operators... 35
Table 6: Analysis Summary of Class-level Mutation Operators.. 40

 5

1. INTRODUCTION

Computer software can have two kinds of problems: faults or failures. A failure does not permit
a program to perform its intended function. A fault is an error in the correctness of a program’s
semantics. Testing is a process of determining faults. Software testing is performed to ensure that
the algorithms used in a program are correct, the program can execute correctly in all possible
scenarios and it conforms to all the requirements specified. Correctness, completeness and quality
are some of the characteristics that all software programs must meet.

Software testing can be performed in a number of ways. There is no fixed process; it is a
simple method of trial and error and investigating various problems encountered whilst execution.
Software testing is performed using test cases. These make use of some variables and determine
the actual output of the program against the expected output. Good test cases help determine
faults that occur rarely.

1.1 Mutation Testing

Mutation testing is one of the many types of methodologies used for testing a program. While
other software testing techniques focus on the correct functionality of the program, mutation testing
focuses on the test cases used to test the programs. The main idea is to create good sets of test
cases rather than trying to find all the faults in a particular program. Good test cases are those
which are able to discover all the easy and hard-to-find faults in the program. An ideal test case will
detect all the possible faults in a software program.

Mutation testing is a white-box testing technique i.e. it examines the internal structure of a
program to detect faults. It is used to determine the effectiveness of test cases i.e. how good they
are in detecting faults. Mutation testing has been developed using two basic ideas:

1. Competent Programmer Hypothesis: Software programs usually differ from the correct
version of the program in minute ways. Most of the programs written are nearly correct.

2. Coupling Effect Hypothesis: Larger programming faults are coupled with smaller faults of
the same nature.

These hypotheses form the platform for mutation testing. Since incorrect programs differ from

the correct versions in minute ways, mutation testing works by making the correct programs
incorrect by using the concept of fault seeding. This is done by the use of mutation operators.
These operators are simple rules which create different versions of the same program with minor
changes. These versions are called mutants. Typically, mutation operators replace operands with
other similar operands or delete entire statements, etc. The process used in mutation testing can
be explained simply in the following steps:

1. Suppose we have a program P
2. Apply mutation operators to P to produce mutant P’
3. Apply test case t to P and P’
4. Analyse outputs of P and P’
5. If the outputs are different, then test case is effective i.e. it can detect the fault and has

killed the mutant.
6. If the outputs are same, there could be two reasons:

i. The mutant is difficult to kill. Write another test case to detect this fault.
ii. The mutant has the same semantic meaning as the original program i.e. it is

equivalent.
We need to achieve a high mutation score for any given set of test cases. This mutation score

indicates how well a particular test set has detected faults in a program. Mutation score can be
defined as:

Mutation score = # of mutants killed / total # of non-equivalent mutants
Where 0 <= M.S. <= 1 or 0% <= M.S. <= 100%

A low score means that the majority of faults cannot be detected accurately by the test set. A

higher score indicates that most of the faults have been identified with this particular test set. A
good test set will have a mutation score close to 100% or ideally 100%.

A simple example of mutation testing has been illustrated below:

 6

 7

If R != R’, then t has killed mutant P’

If R == R’, then mutant P’ is still alive

………
………
c = a + b;
d = c / a;

………
………
c = a

 Program P

** b;

 Apply mutation operator

Mutant P’

 d = c / a;

………
………
c = a + b;
d = c / a;

………
………
c = a
d = c / a;

** b;

Apply test case t to P and P’

 Result R Result R’

Figure 1: Process of Mutation testing

Mutation testing faces a huge challenge. Since every program may have a fault in many
possible ways, one problem is that a large number of mutants are created for very small programs.
Another problem is that sometimes most of these programs are equivalent to the original program.
The latter problem is the topic of discussion for this thesis.

This project focuses on the use of mutation operators to eliminate the problem of equivalent
mutants. The technique adopted suggests that some mutation operators may contribute more
towards the creation of equivalent mutants. Hence, a detailed analysis is carried out for all the
mutation operators used in MuJava (mutation testing tool). Scenarios are sketched which indicate
situations always creating equivalent mutants for certain operators. For the extension of this thesis,
it is suggested that the scenarios sketched out be transformed into algorithms and incorporated
into the respective mutation operators.

2. LITERATURE REVIEW

The aim of mutation testing is to generate a good set of test cases that successfully help find
all possible faults in a software program. We need to achieve a high mutation score i.e. a score
close to 100%. To get the maximum mutation score, we need a test set which successfully kills all
the mutants. But some of the mutants created are equivalent. Therefore, to get the highest
possible score, all the non-equivalent mutants need to be detected.

An equivalent mutant is one, which is syntactically different from the original program, but
semantically the same. Such mutants only contribute in increasing the computational cost. They do
not help in establishing whether a particular test case is effective in discovering faults in a program
or not. The problem of determining whether a mutant is equivalent to the original mutant is
theoretically undecidable.

Sample Program P
……
……

 if(x == 2 && y == 2)

 z = x + y;
……

Mutant P’
……
……
if(x == 2 && y == 2)

 z = x * y;

……

The value of Z will be equal to 4; any test set will be unable to determine any faults
with this program because the value will always be equal to 4.

Figure 2: Example of Equivalent Mutants

Mutation testing is not popular in the industry. Reason being, that a large number of mutants
are generated for very small programs. This incurs a high computational cost, as each test case
needs to be executed on each mutant. The number of mutants generated for a software unit is
proportional to the product of the number of data references and the number of data objects [8]. To
reduce the computational cost, some approaches have been proposed which are explained below:

2.1 ‘Do Smarter’ approaches

These approaches work by dividing computational cost amongst several machines or by
preserving some information, such as compiled code, so that the same code need not be
generated repetitively[8]. They may also avoid complete execution of the entire program. E.g.
suppose there is a program that has 10,000 lines of code. Assuming the 5th line is changed to
create 3 different mutants. It will take a long time to compile the mutated program again and again.
To avoid this, the compiled form of the original program is saved. This compiled form of the original
program is changed for the single line modified in the mutants. Thus, computation cost is saved.

2.1.1 Weak Mutation

Weak mutation is an approximation technique. It compares the internal states of the mutated
program and the original program immediately after executing the mutated portion of the program

[8]. If the state of the mutated program is different from that of the original program, the test case
has killed the mutant. Otherwise the mutant is still alive. The first tool developed for mutation
testing called Mothra used this strategy.

 8

Original program Mutant
result = obj.add(a,b)
………
………
Display(result);

result = obj.multiply(a,b)
/* inspect value of result */
………
Display(result);

Figure 3: Example of Weak Mutation

2.1.2 Distributed Architectures

This approach works by dividing computational cost over multiple machines. Some work has
been carried out on vector processors [8], SIMD machines [8], Hypercube (MIMD) [8] machines, and
Network (MIMD) [8] computers to adapt them for mutation analysis. This is easy to perform as each
mutant is independent of the other mutants and can be executed individually.

2.2 ‘Do Faster’ approaches

These approaches work by generating and running each mutant program as quickly as
possible[8].

2.2.1 Schema-based Mutation Analysis

Many mutation systems compile their programs using interpretive methods. This makes the

task of compilation low and more tedious to build. Untch [8] has built a Mutant Schema Generation
system for this purpose. This system encodes all the mutants into one source-level program to
create a ‘metamutant’ [8]. This metamutant is compiled once and executed in the same
programming environment. Since only a fraction of code is different for each schema, repetitive
runs of large programs can be avoided on the compiler, thus saving computational cost.

Original program Metamutant
result = obj.add(a,b)

Switch(n)
Case 1:
 result = obj.add(a,b)
Case 2:
 result = obj.subtract(a,b)
Case 3:
 result = obj.multiply(a,b)
Case 4:
 result = obj.divide(a,b)
Case 5:
 result = obj.modulus(a,b)
Case 6:
 …………

Figure 4: Example of Schema-based mutation analysis

2.2.2 Separate Compilation Approach

This method avoids the interpretative style of execution. It creates, compiles, executes and
runs each mutant individually. When mutant run times greatly exceed individual compilation/link
times, a system based on such a strategy will execute 15 to 20 times faster than an interpretative
system [8]. One example of such a system is Proteum [8].

2.3 ‘Do Fewer’ approaches

These approaches run lesser number of mutants. A subset of mutants is selected from all the
mutants created in such a way that it is sufficient to determine a good set of test cases.

2.3.1 Selective Mutation

The aim of selective mutation is to achieve maximum coverage by using the least number of

mutation operators. Operators are selected in such a way that most of the mutants are generated
 9

from them. E.g. multiple mutation operators, which produce the same mutant, are discarded when
generating mutants. This idea was developed by Offutt [8] and was called ‘selective mutation’. Since
lesser operators are used, the number of mutants produced also decreases significantly.

2.3.2 Mutation Sampling

This technique randomly selects a subset of mutants produced. This subset is then tested with
the specified test set to determine its sufficiency. If not satisfied, another subset of mutants is
selected randomly. Such subsets are continuously selected till we find one which helps determine
the effectiveness of the particular test set.

Another method of sampling does not use a priori fixed size of mutants; it uses a Bayesian
sequential probability ratio test to determine whether a statistically appropriate sample size of
mutants has been reached [8].

2.4 Techniques

Some techniques have been proposed which deal with the problem of equivalent mutants.

Some of these have been implemented using some algorithms. Tools have also been created for
mutation testing. It was imperative to study these tools as this thesis involves the use of one of
these tools.

2.4.1 Overcoming the Equivalent Mutant Problem and Achieve Tailored Selective

Mutation Using Co-evolution [1]

This technique makes use of genetic algorithms. It is suggested that the use of genetic
algorithms may help reduce the problem of generating a large number of mutants as well as the
problem of equivalent mutants. It is argued that this strategy helps attain selective mutation without
the need of decreasing the mutation operators applied to the programs. This technique performs
three main operations:

1. Evolution of subsets of mutants against a fixed set of test cases:
In this step, mutants are created and validated against a fixed set of test cases. The score
generated indicates the performance level for the mutant against a particular set of test
cases. A low score indicates that the mutant is difficult to kill. Subsets of these mutants are
then created. Each subset corresponds to an individual of the genetic algorithm. A subset
of non-equivalent mutants is then selected with a higher adequacy score. Genetic
algorithms are then used to evolve this set. The fitness function used ensures that the
mutants selected are such that they are definitely killed by some test case. Uniform
crossover is used to enable the selection of highly fit individuals in the population.

2. Evolution of subsets of test cases against a fixed set of test mutants:
The same strategy is used to create a subset of test cases. Test sets are generated
randomly. Mutation scores are then assigned to each set of test cases by executing them
against a fixed set of mutants. This mutation score corresponds to the performance of the
test set against a given set of mutants. Again, each test set is evolved using a fitness
function; it results in another set of test cases which when executed against a set of
mutants give a higher adequacy score.

3. Combine the above two sets using co-evolution:
The two populations generated above are then combined using a fitness function. The
score of each mutant is re-evaluated with respect to the present population of test cases.
Similarly, the score of each test case is re-evaluated with respect to the present population
of the mutants [1].

It is argued in the paper [1], that the strategy proposed ensures that equivalent mutants are not

generated. This is due to the design of the fitness functions. The fitness function created assigns
an adequacy score of 0 to all the mutants which are difficult to kill since they are more likely to
create equivalent mutants. And as explained, only mutants and test cases with higher adequacy
scores are selected.

 10

Summarizing the study presented in this paper, selective mutation has been achieved by the
use of genetic algorithms without reducing the mutation operators used thus reducing the
computational cost. Also, equivalent mutants are not considered to determine the effectiveness of
a particular test set due to the ingenious design of the fitness function.

2.4.2 Using Program Slicing to Assist in the Detection of Equivalent Mutants [2]

It is often argued that it is difficult to apply mutation testing to large programs. This is because

the detection of equivalent mutants becomes more tedious and almost impossible since it is done
manually. It is debated in this paper that the creation of program slices makes detection of
equivalence easier.

A formal notation is used. Let the program be p and mutant p’. An input σ is applied to both p
and p’. p and p’ can be compared by either considering their internal states or final output[2]. To
determine whether a mutant has been killed or not, three different choices are considered:

1. Strong mutation:
Under strong mutation, either the final output of the two programs is considered (strong
output mutation) or the final state of p and p’ is considered (strong state mutation). For
strong output mutation, an equivalent mutant will produce the same value of variable x as
the original program. Similarly, for strong state mutation, an equivalent mutant will produce
the same state of variable x as the original program at the end of execution.

2. Weak mutation:
In weak mutation, if the value of some variable x is different immediately after the execution
of some point in the program, say n, for both programs p and p’ when some input σ is
applied, then the mutant is killed. Hence, a mutant will be equivalent only when the value of
x is identical in p and p’ at any point n.

3. Firm mutation:
Firm mutation creates p’ by mutating some part of p, for example a loop, a control structure,
etc. It then examines p and p’ after applying some input σ to determine if the mutant has
been killed or not. If the value of variable x is the same after the final node in the structure,
the mutant is equivalent.

Program p
1 substring (int from, int to, char target[], char source[]){
2 from++;
3 start = from;
4 if(from < to){
5 while(from != to){
6 target[from-start] = source[from];
7 from++;
8 }
9 target[to-start] = ‘/0’;
10 }
11 else
12 target[0] = ‘/0’;
13 }

The strategy discussed in this paper uses weak mutation. A new Boolean variable, say z, is

introduced in the program p. A slice is then created on this variable and analyzed to determine if
the mutant has been killed or not. The value of z is initially set to true. Every time the node n is
met, the value of z is changed. If the mutant is killed it becomes false, otherwise it remains true.
Equivalence is indicated if the value of z remains true at the end of execution.

Figure 5: Sample program to show strategy using program slicing to detect equivalent mutants

 11

Mutant p’
1 substring (int from, int to, char target[], char source[]){
2 from++;
3 start = from;
4 if(from < to){

5 while(from != to){
6 target[from-start] = source[from]; 7 from++;

 8 }
 9 target[from-start] = ‘/0’;

10 }
11 else 12 target[0] = ‘/0’;
13 }

Mutant p’ to be sliced
1 substring (int from, int to, char target[], char source[]){
2 z = TRUE;
3 from++;
4 start = from;
5 if(from < to){
6 while(from != to){
7 target[from-start] = source[from];
8 from++;
9 }
10 z = z && from == to;
11 target[from-start] = ‘/0’;
12 }
13 else

Figure 6: Example of mutant created for use with program slicing

The Boolean variable z is introduced at this point on line 2. The statement on line 10 shows
that the variable to has been modified to the variable from in p’. A slice is then created with respect
to z and the variable from. This slice is then tested to determine if the mutant has been killed or is
still alive at the end of test execution.

 14 target[0] = ‘/0’;

15 }

Sliced mutant
1 substring (int from, int to, char target[], char source[]){
2 z = TRUE;
3 from++;
5 if(from < to)
6 while(from != to)
8 from++;
10 z = z && from == to;
15 }

Amorphous Slice of mutant p’
substring (int from, int to, char target[], char source[]){

Figure 7: Introduction of Boolean variable z in p’ & the creation of a program slice using z

The authors also discuss that creating amorphous slices may reduce the problem of detecting
equivalent mutants even more by applying further transformations to the traditional slices[2]. The
slice presented in figure 4 will then become:

 z = TRUE;

 from++;
 if(from < to)
 z = TRUE;
}

Figure 8: Creation of an amorphous slice from a traditional program slice for the detection of

equivalent mutants

 12

An interesting observation stated in the paper states that “an ideal amorphous slicing algorithm
would yield this slice for all equivalent mutants, and the equivalent mutant problem would
disappear” [2].

In summary, this paper discusses that the use of program slices can ease the process of
detection of equivalent mutants. it reduces the work carried out manually in identifying equivalent
mutants. Also, it has been suggested that equivalent mutants will always create slices which are
identical for all mutants.

2.4.3 Using Compiler Optimization Techniques to Detect Equivalent Mutants [4]

The strategy presented in this paper makes use of compiler optimisation techniques. The

authors of this paper suggest that “many equivalent mutants are either optimizations or de-
optimizations of the original program” [4]. Equivalent mutants can always be detected by their
optimised code by the use of algorithms. Following are the 6 techniques explained in this paper:

1. Dead code detection
Mutants that change dead code, i.e. code that will never be executed or is irrelevant, will
not affect the output of the program and will thus be equivalent.

2. Constant propagation
It creates a constant table, which keeps entries of variables with constant definitions.
Mutants that are still alive at the end of the execution of a test case can be checked for
equivalence using this table. A mutant that has an entry in this table will be equivalent.

3. Invariant propagation
This technique works by saving the relationship between 2 variables, also called an
invariant, in an invariant table. An equivalent mutant will have the same definitions in the
invariant table, thus not changing the value in the mutated program form that in the original
program.

4. Common sub-expressions
This technique does not identify equivalent mutants directly. It is used in conjunction with
other compiler optimisation techniques. It keeps track of all the temporary variables created
during compilation and determines the equality of relationships between variables if any.

Normal Code Optimized Code
T1 = B + C
T2 = T1 - D
A = T2
T3 = B + C
T4 = T3 – D
X = T4

T1 = B + C
T2 = T1 – D
A = T2
X = T2

Figure 9: Common Sub-expression Detection Example

5. Loop invariant detection
Here, an equivalent mutant is one, which changes the boundary of a loop by moving it
inside or outside when the code is compiled.

6. Hoisting and sinking
This also uses the same technique as loop invariant detection. Equivalent mutants will
generate the same result regardless of hoisting or sinking the code.

2.4.4 Automatically Detecting Equivalent Mutants and Infeasible Paths [3]

The authors of the paper presume that the problem of detecting equivalent mutants is in-fact a

type of a feasible path problem. The feasible path problem states that some test requirements are
infeasible because of the nature of the program semantics. These requirements cannot be satisfied
by the program.

The strategy presented makes use of the constraint-based testing technique. This technique
specifies a number of mathematical properties, which need to be met by any test case. Assuming
that P is a program, M is a mutant of P on statement S, and t is a test case for P. three
mathematical conditions need to be met to kill a mutant:

 13

1. Reachability:
The test case must execute the mutated statement. I.e. if t cannot reach S, then t will never
kill M [3].

2. Necessity:
To kill a mutant, the test case must cause the mutant to have an incorrect state if it reaches
the mutated statement. I.e. for t to kill M, it is necessary that if S is reached, the state of M
immediately following some execution of S must be different from the state of P at the same
point [3].

3. Sufficiency:
The test case must cause the final state of the mutant to be different from the original
program. I.e. the final state of M differs from that of P [3].

These mathematical conditions are then used to apply constraints on the programs. The

constraints are used to determine which mutants are equivalent and which are not.

2.5 Tools

As part of the literature survey, all the tools that have been created for mutation testing were

also studied. None of these tools detect equivalent mutants automatically. The tester has to detect
them by hand. Tools have been developed for a number of languages:

2.5.1 Mothra

It is the oldest tool developed for mutation testing. It was developed as a project at Georgia
Institute of Technology’s Software Engineering Research Centre. This project was initiated in 1986
and developed using C language. It was developed for programs written in FORTRAN and made
for the Linux platform.

Mothra is a set of tools that can be called separately or called using one of Mothra’s interfaces
[5]. Since it is based on a set of data structures, many researchers have tried to expand Mothra by
adding new tools. Mothra works by creating intermediate code of the program. This requires more
compilations and an increase in performance costs.

2.5.2 Jester/Nester/Pester

The tool that was developed first was Jester. It applied mutation testing to Java programs.
Jester works for Java code with JUnit tests. Jester does simple modifications to the programs such
as changing If statements to true or false, etc. After making these modifications, it runs tests on the
modified programs. It then generated web pages displaying the results of the tests using a built-in
script.

Pester is the same as Jester only that it was written for programs created in Python. Test cases
are written in PyUnit. Nester is also a variation of Jester written for C# programs. Unfortunately, no
literature was available to study it in more detail.

2.5.3 MuJava

MuJava is a tool written for java programs. It uses two sets of mutation operators; method-level
and class-level. MuJava creates mutants using the various method-level and class-level operators.
It then runs test cases on them and evaluates the mutation coverage for them. Test cases are
written as separate classes that call methods in the classes that need to be tested.

 14

3. STRATEGY ADOPTED FOR THIS PROJECT

The tool used in this project is MuJava. Before explaining the strategy adopted for this project,
it is imperative to explain the working of MuJava in more detail.

3.1 MuJava

Mutation operators make syntactic changes to the program under test. These syntactic

changes depict usual syntactical mistakes made by programmers while writing code. MuJava
implements a ‘do faster’ approach to mutation testing to save compilation time [6]. This approach
has been adopted primarily for object-oriented programs.

The architecture of MuJava makes use of the Mutant Schemata Generation (MSG) approach.
This approach works by creating one meta-mutant of all the mutant programs and requires only
two compilations: compilation of the original program and compilation of the meta-mutant program.
MuJava uses two types of mutant operators:

 Operators that change the structure of the program.
 Operators that change the behavior of the program.

Figure 10: Structure of MuJava [6]

Different engines create the structural and behavioral mutants. For the behavioral mutants,
compile time reflection is used to analyze the original program. The MSG engine then uses
compile time reflection as well to create a meta-mutant program. For the structural mutants, the
original source code is compiled using the Java compiler. BCEL API is then used to add or delete
class members in the resulting byte code translation [6].

Details of how MuJava is used are given in Appendix A.

3.2 Motivation

Mutation testing has a high computational cost. A large number of mutants are created for very

small programs. This is because each program can have various faulty versions. Each version
could be a simple replacement of an addition operator, for example, with all other arithmetic

 15

operators in a particular language. All these mutants need to be compiled and executed against a
specific set of test cases.

In addition to this high cost, sometimes most of the mutants created are equivalent. Equivalent
mutants produce the same output for the original program as well as the modified program or the
mutant.

These issues have prevented mutation testing to gain wide-spread acceptance in the software
industry. The aim of this thesis is to help determine a technique by the use of which the number of
equivalent mutants produced is reduced.

Quite a few techniques have been proposed to date to deal with this issue as discussed in
chapter 2. Some algorithms have been proposed for them, but none of them have been
implemented so far. Most authors have resorted to combining other software engineering
strategies such as genetic algorithms and compiler optimization techniques with mutation testing.
In view of this thesis, this has made the process of detecting equivalence more arduous. The
implementation of any of these strategies would require the creation of an entirely new tool for
mutation testing rather than reusing any one of those already developed.

The strategy discussed here makes use of MuJava, a mutation testing tool developed in 2003.
None of the other mutation testing tools have been used due to lack of support for the Windows
platform. Also, some of the tools did not contain enough literature to support their operation. The
main idea is that some mutation operators may develop a greater number of equivalent mutants as
compared to other operators. To support this argument, the mutation operators of MuJava are
discussed in great detail. An analysis is carried out to see which operators create a large number
of equivalent mutants.

3.3 The Strategy

For this project, the main aim is to help identify those mutation operators that contribute more

towards creating equivalent mutants. The procedure that was followed is explained below:
1. Test programs were created for method-level and class-level operators. These test

programs serve as original programs for which mutants will be generated later.
2. Two different approaches were adopted for method-level and class-level operators

a. For method-level operators, different programs were developed each for arithmetic,
shift, logical operators etc. Then all the method-level mutation operators were
applied to each type of program to create the mutants.

b. For the class-level operators, programs were written for the common data structures
of Linked list. A Stack class was then derived from it. Programs were then written
which used these classes. These programs differed for each of the class-level
mutation operators. All the class-level mutation operators were applied to all the
programs to create mutants.

3. Empirical data was gathered indicating which mutation operators created a greater number
of mutants as compared to other mutation operators.

4. Also, a manual inspection was conducted on all the mutants to discover the equivalent
versions.

5. Java programs were then created containing the test cases for each of the method-level
and class-level operators original programs created in step 2. These test cases perform
branch coverage on the original program.

6. The test cases were executed against the original programs using MuJava.
7. The mutation scores were obtained.
8. Also, it was determined that how many mutants were left alive by each of the operators at

the end of test execution.
9. Of the mutants left alive, the equivalent mutants were determined.
10. An empirical analysis was conducted to determine which mutation operators contribute

more towards creating equivalent mutants.

The empirical data gathered and its analysis is discussed in great detail in chapters 6 and 7.

 16

4. METHOD-LEVEL MUTATION OPERATORS

This chapter will briefly describe the method-level operators implemented in MuJava. The
operators considered for MuJava modify the expressions by inserting, replacing or deleting the
primitive operators [9]. MuJava contains six types of primitive operators.

1. Arithmetic operators
2. Relational operators
3. Conditional operators
4. Shift operators
5. Logical operators
6. Assignment operators

Some of these operators have short-cut versions as well. Because of this, some operators are

subdivided into binary, unary and short-cut versions. In all, there are 12 method-level operators in
MuJava.

Since MuJava has been created for Java programs, only operators used in Java are
considered for the creation of the tool.

Category Operator Description

AORBB

AORU
AORS

Arithmetic Operator Replacement (binary)
Arithmetic Operator Replacement (unary)
Arithmetic Operator Replacement (short-cut)

AOIU
AOIS

Arithmetic Operator Insertion (unary)
Arithmetic Operator Insertion (short-cut)

Arithmetic

AODU
AODS

Arithmetic Operator Deletion (unary)
Arithmetic Operator Deletion (short-cut)

Relational ROR Relational Operator Replacement
COR Conditional Operator Replacement
COI Conditional Operator Insertion Conditional
COD Conditional Operator Deletion

Shift SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion Logical
LOD Logical Operator Deletion

Assignment ASRS Assignment Operator Replacement (short-cut)

Table 1: Method-level operators in MuJava

4.1 Arithmetic Operators

Arithmetic operators perform mathematical computations on all integers and floating-point
numbers. The arithmetic operators supported in Java are:

 For binary: op + op (addition), op – op (subtraction), op * op (multiplication), op / op
(division) and op % op (modulus).

 For unary: + (plus indicating positive value), - (minus indicating negative value)
 For short-cut: op++ (post-increment), ++op (pre-increment), op-- (post-decrement), --op

(pre-decrement)

The arithmetic operators used in MuJava are explained below [9]:
 AORB / AORB U / AORS: Arithmetic Operator Replacement

These operators replace binary, unary or short-cut arithmetic operators with other binary,
unary or short-cut operators, respectively.

 AOIU / AOIS: Arithmetic Operator Insertion
These operators insert unary or short-cut arithmetic operators, respectively.

 AODU / AODS: Arithmetic Operator Deletion
These operators delete unary or short-cut arithmetic operators, respectively.

 17

4.2 Relational Operators

Relational operators compare the values of two operands. The relational operators supported
in Java are:

 op > op (greater than), op >= op (greater than or equal to), op < op (less than), op <= op
(less than or equal to), op == op (equal to) and op != op (not equal to).

Since these operators require two operands, only replacement is allowed for these operators.

The relational operator used in MuJava is explained below [9]:
 ROR: Relational Operator Replacement

This operator replaces relational operators with other relational operators.

4.3 Conditional Operators

Conditional operators or bitwise operators perform computations on the binary values of its
operands. These operators exhibit short-circuit behavior. The conditional operators supported in
Java are:

 For binary: op && op (conditional AND), op || op (conditional OR), op & op (bitwise AND),
op | op (bitwise OR) and ^ (bitwise XOR).

 For unary: !op (bitwise logical complement)

The arithmetic operators in MuJava are explained below [9]:
 COR: Conditional Operator Replacement

This operator replaces binary conditional operators with other binary conditional operators.
 COI: Conditional Operator Insertion

This operator inserts unary conditional operators.
 COD: Conditional Operator Deletion

This operator deletes unary conditional operators.

4.4 Shift Operators

Shift operators require two operands. They manipulate the bits of the first operand in the
expression by either shifting them to the right or the left. The shift operators supported in Java are:

 op >> op (signed right shift), op << op (signed left shift) and op >>> op (unsigned right
shift).

The arithmetic operators in MuJava are explained below [9]:
 SOR: Shift Operator Replacement

This operator replaces binary shift operators with other binary shift operator.

4.5 Logical Operators

Logical operators perform logical comparisons to produce a Boolean result for comparison
statements. The logical operators supported in Java are:

 For binary: op & op (AND), op | op (OR) and op ^ op (XOR).
 For unary: ~op (bitwise complement)

The arithmetic operators in MuJava are explained below [9]:
 LOR: Logical Operator Replacement

This operator replaces binary logical operators with other binary logical operators.
 LOI: Logical Operator Insertion

This operator inserts unary logical operators.
 LOD: Logical Operator Deletion

This operator deletes unary logical operators.

 18

4.6 Assignment Operators

Assignment operators set the values of an operand. The short-cut assignment operators
perform a computation on the right hand operand and then assign its value to the left hand
operand. The assignment operators supported in Java are:

 For short-cut: op += op (addition assignment), op -= op (subtraction assignment), op *= op
(multiplication assignment), op /= op (division assignment), op %= op (modulus
assignment), op &= op (bitwise AND assignment), op |= op (bitwise OR assignment), op ^=
op (bitwise XOR assignment), op <<= op (right shift assignment), op >>= op (left shift
assignment), op >>>= op (unsigned right shift assignment).

The arithmetic operators in MuJava are explained below [9]:
 ASRS: Assignment Operator Replacement Short-cut

This operator replaces short-cut assignment operators with other short-cut assignment
operators.

 19

5. CLASS-LEVEL MUTATION OPERATORS

This chapter will briefly describe the class-level operators implemented in MuJava. The

operators considered for MuJava have been divided in four categories according to their usage in
Object Oriented programming. The first 3 groups target features common to all OO languages. The
last group includes features that are specific to Java. These groups are:

1. Encapsulation
2. Inheritance
3. Polymorphism
4. Java-specific Features

Like method-level operators, the class-level operators make changes to the program syntax by

inserting, deleting or modifying the expressions under test. Operators have been defined for each
category. In all, there are 29 class-level operators in MuJava. These operators are explained in
detail below. All code examples have been taken from [10].

Language Feature Operator Description
Encapsulation AMC Access modifier change

IHD Hiding variable deletion
IHI Hiding variable insertion
IOD Overriding method deletion
IOP Overriding method calling position change
IOR Overriding method rename
ISI Super keyword insertion
ISD Super keyword deletion

Inheritance

IPC Explicit call to parent’s constructor deletion
PNC New method call with child class type
PMD Member variable declaration with parent class type
PPD Member variable declaration with child class type
PCI Type cast operator insertion
PCC Cast type change
PCD Type cast operator deletion
PRV Reference assignment with other compatible variable
OMR Overloading method contents replace
OMD Overloading method deletion

Polymorphism

OAN Arguments of overloading method call change
JTI this keyword insertion
JTD this keyword deletion
JSI static modifier insertion
JSD static modifier deletion
JID Member variable initialisation deletion
JDC Java-supported default constructor creation
EOA Reference assignment & content assignment replacement
EOC Reference comparison & content assignment replacement
EAM Accessor method change

Java-specific Features

EMM Modifier method change

Table 2: Class-level operators in MuJava

5.1 Encapsulation

Encapsulation in OOP deals with data hiding. It is the ability of an object to create a boundary
around its data and methods. Encapsulation allows a programmer to define the access levels for
various objects. For this purpose many access modifiers are used. Specifying the wrong access
modifier can lead to incorrect results.

There is only one mutation operator in MuJava, which deals with encapsulation.
 AMC: Access Modifier Change

This operator replaces the access modifiers for various instance variables and methods
in a program [10]. This allows a tester to ensure that the correct level of accessibility is used
in a program.

 20

 Original Code Mutants
public Stack s; private Stack s;

protected Stack s;

5.2 Inheritance

Inheritance allows the data and methods of one class (parent class) to be used by another

class (child class). Inheritance promotes code reusability.
Eight mutation operators have been developed for MuJava that deal with inheritance.

Variable shadowing allows a child class to hide or shadow the variables in the parent class.

This may cause incorrect variable to be accessed. Mutation operators IHD and IHI test this issue in
OOP.

 IHD: Hiding variable deletion
This operator deletes a hiding variable in a child class. In this way, the variable in the

parent class can be accessed.

Original Code Mutants
class List {
 int size;
 …
}
class Stack extends List {
 int size;
 …..
}

class List {
 int size;
 …
}
class Stack extends List {
// int size;
 …
}

 IHI: Hiding variable insertion

This operator inserts a hiding variable in a child class. It is reverse of IHD. Newly
defined and overriding methods in a subclass reference the hiding variable whereas
inherited methods reference the hidden variable as before [10].

Original Code Mutants
class List {
 int size;
 …
}
class Stack extends List {
 …
 …
}

class List {
 int size;
 …
}
class Stack extends List {
 int size;
 …
}

A child class can modify the behavior of its parent class by creating a method with the same

name and arguments as the parent class. This is called method overriding. Mutation operators
IOD, IOP and IOR are used to test issues related to method overriding in MuJava.

 IOD: Overriding method deletion
This operator deletes the entire declaration of the overriding method in the child class.

All references to this function then access the method in the parent class.

Original Code Mutants
class Stack extends List {
 …
 void push(int a){
 …
 }
}

class Stack extends List {
 …
/* void push(int a){
 …
 } */
}

 IOP: Overridden method calling position change

Sometimes the overriding method in the child class may need to call the method it
overrides in the parent class [10]. It is necessary to test that the method in the parent class is

 21

called at the right point in the program otherwise it would cause the program to be in an
incorrect state.

Original Code Mutants
class List {
 …
 void SetEnv(){
 size = 5;
 …
 }
}
class Stack extends List {
 …
 void SetEnv(){
 super.SetEnv();
 size = 10;
 …
 }
}

class List {
 …
 void SetEnv(){
 size = 5;
 …
 }
}
class Stack extends List {
 …
 void SetEnv(){
 size = 10;
 super.SetEnv();
 …
 }
}

 IOR: Overridden method rename

This operator is used to check if an overriding method adversely affects other methods
[10]. It renames the method being overridden in the parent class so that the overriding
method in the child class doesn’t affect the method in the parent class.

 Original Code Mutants
class List {
 …
 void f(){ … }
 void m(){
 f();
 …
 }
}
class Stack extends List {
 …
 void f(){ … }
 void g(){
 f();
 …
 }
}

class List {
 …
 void f’(){ … }
 void m(){
 f’();
 …
 }
}
class Stack extends List {
 …
 void f(){ … }
 void g(){
 f();
 …
 }
}

The super keyword allows a programmer to access the member variables and functions of the

parent class when using variable shadowing or method overriding. Mutation operators ISI and ISD
are used to test issues regarding use of the super keyword in MuJava.

 ISI: super keyword insertion
This operator inserts the super keyword so that any references to the variable or

method go to the overridden method or variable [10].

Original Code Mutants
class Stack extends List {
 …
 int MyPop(){
 …
 return val * num;
 }
}

class Stack extends List {
 …
 int MyPop(){
 …
 return val * super.num;
 }
}

 ISD: super keyword deletion

This operator deletes the super keyword so that any references to the variable or
method go to the overriding method or variable [10].

 22

Original Code Mutants
class Stack extends List {
 …
 int MyPop(){
 …
 return val * num;
 }
}

class Stack extends List {
 …
 int MyPop(){
 …
 return val * super.num;
 }
}

The constructors of the parent class are not inherited like other methods. Whenever an object

of a child class is created, it automatically invokes the default constructor of the parent’s class
before invoking its own constructor. The child class can also use the super keyword to invoke a
specific parent class constructor [10]. Mutation operator IPC is used to test this in MuJava.

 IPC: explicit call of a parent’s constructor deletion
This operator deletes calls to the parent class’s constructor. This causes the default

constructor of the parent class to be called [10].

Original Code Mutants
class Stack extends List {
 …
 Stack(int a){
 super(a);
 …
 }
}

class Stack extends List {
 …
 Stack(int a){
// super(a);
 …
 }
}

5.3 Polymorphism

Polymorphism allows objects to react differently to the same method. It is implemented by

having many methods with the same name.
Ten mutation operators have been developed for MuJava that deal with polymorphism.
 PNC: new method call with child class type

This operator changes the constructor used to instantiate an object i.e. it changes the
type with which the object is instantiated. It makes the object reference refer to an object of
a different type than that with which it is declared [10].

Original Code Mutants
Parent a;
a = new Parent();

Parent a;
// a = new Child();

 PMD: member variable declaration with parent class type

This operator changes the declared type of an object reference to the parent of the
original declared type [10].

Original Code Mutants
Child b;
b = new Child();

// Parent b;
b = new Child();

 PPD: parameter variable declaration with child class type

This operator is similar to PPD. The only difference is that it changes the declared type
of the parameter object to the parent of the original declared type [10].

Original Code Mutants
boolean equals (Child o){
 … }

// boolean equals (Parent o){
 … }

 PCI: type cast operator insertion
This operator changes the actual type of an object reference to the parent/child of the

original declared type [10]. Different behavior is exhibited when the type of the object
reference is changed for overriding methods and hiding variables.

 23

Original Code Mutants
Child cRef;
Parent pRef = cRef;
PRef.toString();

Child cRef;
Parent pRef = cRef;
// ((Child)pRef).toString();

 PCD: type cast operator deletion

This operator is the opposite of PCI. It deletes the type casting operator from an object
reference.

Original Code Mutants
Child cRef;
Parent pRef = cRef;
((Child)pRef).toString();

Child cRef;
Parent pRef = cRef;
// pRef.toString();

 PCC: cast type change

This operator changes the type of the casting operator. The type is changed to the
ancestors or descendants of the original type.

Original Code Mutants
((Parent)pRef).toString(); // ((Child)pRef).toString();

 PRV: reference assignment with other compatible type

This operator changes the assignment to an object reference. This assignment is
changed to other compatible types of the object under question that are usually this object’s
subclasses.

Original Code Mutants
Object obj;
String s = “Hello”;
Integer I = new Integer(4);
obj = s;

Object obj;
String s = “Hello”;
Integer i = new Integer(4);
// obj = i;

Method overloading allows two or more methods of the same class to have the same name but

different arguments. Mutation operators OMR, OMD and OAN are used to test issues related to
method overloading in MuJava.

 OMR: overloading method contents change
This operator checks if overloaded methods are invoked correctly. It does so by

replacing the body of one method with the body of another method that has the same name
[10].

 Original Code Mutants
class List {
 …
 void Add(int e){ … }
 void Add(int e, int n){
 …
 }
}

class List {
 …
 void Add(int e){ … }
 void Add(int e, int n){
// this.Add(e);
 }
}

 OMD: overloading method deletion

This operator works by deleting each of the overloading methods one by one. This
operator ensures coverage of all the overloaded methods [10].

Original Code Mutants
class Stack extends List {
 …
 void Push(int i){ … }
 void Push(float i){
 …
 }
}

class Stack extends List {
 …
// void Push(int i){ … }
 void Push(float i){
 …
 }
}

 24

 OAN: argument of overloading method change
This operator works by changing the order or the number of arguments in method

invocations. The number of arguments is changed only if there are other overloaded
methods that accept the new argument list [10].

Original Code Mutants
s.push(0.5, 2); s.push(2, 0.5);

s.push(2);
s.push(0.5);
s.push();

5.4 Java-specific Features

This group of operators is used to cover those aspects of Java that are not covered by other
object-oriented programming languages.

Ten mutation operators have been developed for MuJava that deal with Java specific features
only.

 JTI: this keyword insertion
This operator inserts the this keyword. It helps check if the member variables are used

correctly if they are hidden by method parameters [10].

Original Code Mutants
class Stack {
 int size;
 …
 void setSize(int size){
 this.size = size;
 …
 }
}

class Stack {
 int size;
 …
 void setSize(int size){
// this.size = this.size;
 …
 }
}

 JTD: this keyword deletion

This operator deletes this keyword anywhere it occurs in the program. It is the opposite
of JTI [10].

Original Code Mutants
class Stack {
 int size;
 …
 void setSize(int size){
 this.size = size;
 …
 }
}

class Stack {
 int size;
 …
 void setSize(int size){
// size = size;
 …
 }
}

 JSI: static modifier insertion

This operator adds the static modifier to change instance variables to class variables
[10].

Original Code Mutants
public int s = 100; // public static int s = 100;

 JSD: static modifier deletion
This operator removes the static modifier to change class variables to instance

variables [10].

Original Code Mutants
public static int s = 100; // public int s = 100;

 25

 JID: member variable initialization deletion
This operator deletes any initialization in the variable declaration and in class

constructors. The variables are then initialized to the default values in Java [10].

 Original Code Mutants
class Stack {
 int size = 100;
 …
 Stack(){ … }
}

class Stack {
 int size = 100;
 …
 Stack(){ … }
}

 JDC: Java-supported default constructor create

This operator deletes any implemented default constructors created by the
programmer. It creates Java’s own default constructor for use [10].

Original Code Mutants
class Stack {
 …
 Stack(){ … }
}

class Stack {
 …
 Stack(){ … }
}

 EOA: reference assignment and content assignment replacement

This operator replaces an assignment of a pointer reference with a copy of the object
using the Java convention of a clone() method [10]. This method creates a copy of the
contents of an object and returns a reference to a new object.

Original Code Mutants
Stack s1, s2;
s1 = new Stack();
s2 = s1;

Stack s1, s2;
s1 = new Stack();
s2 = s1.clone();

 EOC: reference comparison and content comparison replacement

This operator is used to check the fault of comparing the contents of an object with the
object’s references. EOC helps to resolve this issue by using the equals() function for
comparing the references of two objects [10].

Original Code Mutants
Integer i1 = new Integer(7);
Integer i2 = new Integer(7);
boolean b = (i1 == i2);

Integer i1 = new Integer(7);
Integer i2 = new Integer(7);
boolean b = (i1.equals(i2));

 EAM: accessor method change

This operator changes the accessor method name for other compatible accessor
method names [10].

Original Code Mutants
point.getX(); point.getY();

 EMM: modifier method change

This operator changes the modifier method name for other compatible modifier method
names [10].

Original Code Mutants
point.setX(2); point.setY(2);

 26

6. EMPIRICAL ANALYSIS

For this project, a detailed empirical analysis was carried out for each type of mutation

operators. Different strategies were adopted for method-level operators and class-level operators
to create mutants using MuJava. This chapter explains in detail how the mutants were created and
the results obtained using MuJava.

The aim of this empirical analysis is to determine which mutation operators are more probable
to create equivalent mutants. The test cases created for each of these operators ensure that
branch coverage is achieved.

6.1 Method-level Mutation Operators

There are 12 method-level operators in MuJava, which have been explained in detail in chapter
4. To develop mutants for these operators the following strategy was used:

1. One type of mutation operator was chosen, e.g. Arithmetic mutation operators i.e. AOR,
AOI, AOD.

2. A simple Java program (say ‘ArithOper.java’) was developed, which used this type of
mutation operator, in this case, arithmetic operators.

3. MuJava was started and all the method-level operators were selected.
4. Using MuJava, mutants were created for ‘ArithOper.java’.
5. Another java program was created (say ‘ArithOperTest.java’) which contained the test

cases for ‘ArithOper.java’. These test cases must exercise branch coverage for
‘ArithOper.java’.

6. ‘ArithOperTest.java’ was run against ‘ArithOper.java’ to determine how many mutants were
killed and the mutation score was calculated.

7. Of the mutants still alive at the end of the execution, the equivalent mutants were
determined manually.

8. The entire process from steps 1 to 7 was repeated to develop java programs for each type
of method-level mutation operator i.e. relational, conditional, shift, logical and assignment.

Using the above process, the data collected in the first instance indicates the number of

mutants created for each method-level operator. Following table explains this.

Operator Number of Mutants

AORB 4
AORS 0
AOIU 10
AOIS 120
AODU 0
AODS 0
ROR 20
COR 4
COD 0
COI 2
SOR 2
LOR 2
LOI 33
LOD 0

ASRS 4

Table 3: Number of Mutants for Method-level Operators

6.1.1 Observations

When test cases were executed for all the mutants created by method-level operators, some
interesting observations were made:

 No mutants were created for some operators as indicated in table 3.

 27

 The greatest number of mutants, i.e. 120, were created for AOIS, which account for almost
59% of the total number of mutants created for method-level operators.

 MuJava could not compile some mutants that were created by the mutation operator LOI.
These mutants contribute as programs that fail the software. So it can be said that MuJava
has also helped to identify some of the syntactic changes in the program, which make the
program fail. These mutants were not considered when test cases were executed for
‘LogicalOper.java’.

6.1.2 An Analysis of the Mutants killed/alive

Test cases were created for each type of method-level operator. When these test cases were
executed against the mutants, the following results were obtained (Since, AOIS was dominating
the entire graph, two graphs have been drawn, one with and the other without AOIS to give a
deeper insight into the analysis.):

Number of Mutants(Method-level Operators) - killed

0

20

40

60

80

100

120

140

AORB AOIU AOIS ROR OR SOR LOR LOI ASRS

Method-level Operators

of

 M
ut

an
ts

 (a
liv

e/
ki

lle
d)

C

No. Killed No. Live

Figure 11: Number of Mutants killed by Method-level Operators

Number of Mutants(Method-level Operators without AOIS) - killed

0

10

20

30

40

AORB AOIU ROR COR SOR LOR LOI ASRS

Method-level Operators

of

 M
ut

an
ts

(a

liv
e/

ki
lle

d)

No. Killed No. Live

Figure 12: Number of Mutants (excluding AOIS) killed by Method-level Operators

From figure 11, it can be seen that a large number of mutants were created for AOIS, ROR and
LOI. From intuition, it can be assumed that most of the equivalent mutants might belong to these
operators.

From figures 11 & 12, it can be seen that the mutants, which are still alive at the end of the
execution, belong to the operators AOIU, ROR, LOI and AOIS. Out of these, the majority of live
mutants belong to those created by AOIS. The figure below shows the percentage of live mutants
for each type of method-level mutation operator created by AOIS.

 28

 Live Mutants - AOIS

0%
10%
20%
30%
40%
50%
60%
70%
80%

ArithOper CondOper LogicalOper RelOper ShiftOper AssignOper

Category of Operators

%
 o

f L
iv

e
M

ut
an

ts
% of Live Mutants

Figure 13: Percentage of live mutants created by operator AOIS

It can be observed that in most cases, almost 50% of the mutants, which are still alive at the
end of executing the test cases, are the mutants created by method-level operator AOIS.

An analysis of the mutants that are equivalent from the mutants that are still alive is given in
chapter 7.

6.2 Class-level Mutation Operators

There are 29 method-level operators in MuJava, which have been explained in detail in chapter

5. To develop mutants for these operators the following strategy was used:
1. A simple java program for the common data structure linked list was written. A stack class

was then written which was derived from linked list. The main program using these data
structures varied for each type of operator. The hierarchy for these programs can be shown
as:

ListNode.java

LinkedListList.java

MainClass.java Stack.java

Figure 14: Structure of programs used for Class-level operators

2. Different versions of the three Java programs were created for each of the class-level
mutation operators.

3. MuJava was started and all the class-level operators were selected to create mutants for
the Java programs.

4. Another Java program (say ‘MainClassTest.java’) was created containing all the test cases
to be applied to ‘ListNode.java’, ‘LinkedList.java’, ‘Stack.java’ and ‘MainClass.java’. These
test cases must exercise branch coverage.

5. ‘MainClassTest.java’ was then executed against the other 4 programs to determine how
many mutants were killed and the mutation score was then calculated.

6. Of the mutants still alive at the end of the execution, the mutants that were equivalent were
determined manually.

7. The entire process from steps 1 to 6 was repeated to develop Java programs for all the
class-level mutation operators.

Using the above process the data collected in the first instance indicates the number of
mutants created for each class-level operator.

 29

Operator Number of Mutants

AMC -
IHD 7
IHI 15
IOD 17
IOP 1
IOR 2
ISI 1
ISD 1
IPC 1
PNC 1
PMD 2
PPD 1
PCI 3
PCC 0
PCD 0
PRV 361
OMR 4
OMD 1
OAN 4
JTI 3
JTD 2
JSI 40
JSD 0
JID 4
JDC 14
EOA 0
EOC 1
EAM 2
EMM 2

Table 4: Number of Mutants for Class-level Operators

6.2.1 Observations

When test cases were executed for all the mutants created by class-level operators, the
following observations were made:

 No mutants were created for some operators as indicated in table 5.
 The operator AMC has not been implemented in the current version of MuJava although

the literature supporting the tool discusses it.
 The greatest numbers of mutants, i.e. 356, were created for PRV, which account for almost

72% of the total number of mutants created for class-level operators.
 As for method-level operator, LOI, MuJava could not compile some mutants that were

created by the mutation operator PRV and PMD. These mutants contribute as programs
that fail the software. So it can be said that MuJava has also helped to identify some of the
syntactic changes in the program, which make the program fail.

 For PMD, all the mutants that were created made the software crash during execution.
Thus, the mutants created by PMD were disregarded completely when executing test
cases.

 As for PRV, some of the mutants created incurred failure. The summary for PRV is given in
the figure below:

 30

Percentage of Mutants failed for AOIS

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%

Th
is

Ke
yw

or
dM

ai
n

St
at

ic
Ke

yw
or

d
m

ai
n

O
ve

rr
id

de
nM

et
ho

dR
en

am
e

Su
pe

rK
ey

w
or

d

C
lo

ne
M

ai
n

O
ve

rlo
ad

in
gM

et
ho

d

O
ve

rM
et

ho
dD

el
et

e

Pa
re

nt
C

on
st

ru
c

to
rD

el
et

io
n

M
et

ho
dP

os
itio

n
C

ha
ng

e

Class-level Operators - Programs

%
 o

f M
ut

an
ts

 in
cu

rin
g

Fa
ilu

re

% of Mutants failed

Figure 15: Percentage of mutants incurring failure created by PRV

This graph shows that almost 45% of the total mutants created by PRV for each type of
program, failed the software. This means that the mutants that were created made the program fail
and can thus, be disregarded when executing test cases to determine mutation scores.

6.2.2 An Analysis of the Mutants killed/alive

Test cases were created for each type of class-level operator. When these test cases were
executed against the mutants, the following results were obtained (as in method-level operators,
since, PRV was dominating the entire graph, two graphs have been drawn with and without PRV
do give a deeper insight into the analysis.):

Number of Mutants (Class-level operators) - killed

0

50

100

150

200

250

IHD IHI IOD IOP IOR ISI ISD IPC PNC PMD PPD PCI PRV OMR OMD OAN JTI JTD JSI JID JDC EOC EAM EMM

Class-level Operators

of

 M
ut

an
ts

(a

liv
e/

ki
lle

d)

No. Killed No.Live

Figure 16: Number of Mutants killed by Class-level Operators

Number of Mutants (Class-level Operators without PRV) - killed

0
5

10
15
20
25
30
35
40
45

IHD IHI IOD IOP IOR ISI ISD IPC PNC PMD PPD PCI OMR OMD OAN JTI JTD JSI JID JDC EOC EAM
Class-level Operators

of

 M
ut

an
ts

 (a
liv

e/
ki

lle
d)

No. Killed No.Live

Figure 17: Number of Mutants killed by Class-level Operators excluding PRV

 31

From figure 16, it can be seen that a large number of mutants were created for PRV, JSI, IOD
and IHI as compared to the other operators. From intuition, it can be assumed that most of the
equivalent mutants might belong to these operators.

However, class-level operators behave differently as compared to method-level operators. If it
is assumed that most of the mutants that may be still alive at the end of test execution are those
created by PRV, JSI and IOD, the reverse happens when testing is performed in practice. From
figures 16 & 17, it can be seen that the mutants that are still alive at the end of the execution,
belong to the operators PRV, JDC, JID and some other operators. Out of these, the majority of live
mutants belong to those created by PRV.

An analysis of the mutants that are equivalent to the mutants that are still alive for class-level
operators is given in the next chapter.

 32

7. AN EVALUATION OF EQUIVALENT MUTANTS

For this project, all the test cases have been written such that they ensure that all the branches
in the sample programs are covered. This is performed to determine adequacy of the test criterion.
To determine the equivalent mutants for method-level operators and class-level operators, a
manual inspection of the mutants left alive was carried out. There was no definite process.

For each operator, graphs have been created which show the total number of mutants created,
the number of mutants killed, the number of equivalent mutants and the number of mutants that
failed the software. These results will help determine which mutation operators are prone to
develop more equivalent mutants. Also, scenarios were identified for certain mutation operators.
These indicate the situations in which some of the mutation operators were more likely to create
equivalent mutants. At the end of the analysis 3 types of results were obtained:

1. The percentage of mutants killed per mutation operator
2. The percentage of non-equivalent mutants per mutation operator
3. The percentage of equivalent mutants per mutation operator

7.1 Evaluation of Method-level Mutation Operators

According to table 3 in chapter 6, MuJava created no mutants for the method-level mutation
operators AORS, AODU, AODS, COD and LOD. An analysis has been performed for the
remaining operators namely, AORB, AOIU, AOIS, ROR, COR, COI, SOR, LOR, LOI and ASRS.
Graphs have been created. These graphs have been divided in arbitrary groups of 2. The last
graph depicts the analysis for the method-level operator AOIS since it dominates the behavior of
the other operators. This analysis is explained in more detail below:

Figure 18: Evaluation of Method-level Operators AORB, AOIU, ROR, COR & COI

Figure 18 shows an evaluation of the operators AORB, AOIU, ROR, COR and COI.
MuJava created a very small number of mutants for AORB. But all the mutants that were

created were killed successfully. None of the mutants that were created were found to be
equivalent. Also, no mutants caused MuJava to fail. Thus, 100% mutation score was achieved.

As compared to AORB, AOIU still created a considerable number of mutants. But the behavior
exhibited by AOIU was identical to that of AORB. 100% of the mutants created for AOIU were
killed by MuJava. None of the mutants that were created were found to be equivalent.

The operator ROR works by replacing relational operators with all other relational operators. A
significantly good number of operators were created for ROR (20). Of these, 19 mutants were
killed. None of the mutants were found to be equivalent. The one mutant which was not killed was
just difficult to kill. It was not equivalent.

 33

COR is another mutation operator which replaces conditional operators with other conditional
operators. Like AORB, COR also created a very small number of mutants. But all the mutants that
were created were killed. None of the mutants were found to be equivalent.

MuJava created only 2 mutants for COI. But all of these mutants failed the software. Thus,
none of the mutants were found to be equivalent and none were killed.

Figure 19: Evaluation of Method-level Operators SOR, LOR, LOI & ASRS

Figure 19 shows an evaluation of the operators SOR, LOR, LOI and ASRS.
A very small number of mutants were created for SOR. The test set created, successfully killed

all the mutants. None of the mutants that were created were found to be equivalent.
Similarly, an extremely small number of mutants were created for LOR. None of the mutants

that were created were semantically similar to the original program. Also, all the mutants were
killed successfully. Thus, 100% mutation score was achieved.

LOI exhibited interesting behaviour. A reasonable number of mutants was created for LOI. Of
the 34 mutants created 29 were killed. But 3 of the mutants caused MuJava to fail. Although 85.2%
of the mutants were killed, the remaining did not help detect any faults. Most of the remaining
mutants caused the program to fail.

ASRS is an operator which replaces short-cut assignment operators with other short-cut
assignment operators. All of the mutants that were created for ASRS were killed. No mutants were
equivalent.

Figure 20: Evaluation of Method-level Operator AOIS

 34

The maximum numbers of mutants were created for AOIS as shown in figure 20. Of the 120
mutants created, 76 were killed giving a mutation score of 63.33% which is not considered too
good. Of the remaining mutants, all were found to be equivalent. Hence, 29.17% mutants created
for AOIS were unable to capture program faults. This is in agreement to the assumption made in
chapter 6 that if more mutants are left alive by AOIS they are more likely to be equivalent.

7.1.1 Summary of Method-level Mutation operators

The following table summarizes the behaviour of method-level mutation operators. It shows the
percentage of mutants killed for each mutation operator. It also indicates the percentage of non-
equivalent mutants against the percentage of equivalent mutants.

Method-level Operators Percentage of Mutants

Killed
Percentage of Non-
equivalent Mutants

Percentage of
Equivalent Mutants

AORB 100% 100% 0%
AOIU 100% 100% 0%
AOIS 63.33% 70.83% 29.17%
ROR 95% 100% 0%
COR 100% 100% 0%
COI 0% 100% 0%
SOR 100% 100% 0%
LOR 100% 100% 0%
LOI 96.67% 100% 0%

ASRS 100% 100% 0%

Table 5: Analysis Summary of Method-level Mutation Operators

This table clearly indicates that the only method-level operator which created equivalent
mutants was AOIS. This is in partial agreement with the observation made in chapter 6. It was
assumed that operators AOIS, ROR and LOI are most probable to create equivalent mutants
because they formed the majority of all the mutants that were created for method-level mutation
operators. But it can be supported with evidence that the only equivalent mutants produced were
those created for AOIS. As for ROR and LOI, a mutation score of 95% and 96.67% was achieved,
respectively. The remaining operators performed well and successfully killed all the mutants.
However, all the mutants that were created for COI caused the software to fail. Also, the mutants
that were left alive by LOI, 75% of them failed MuJava.

Since AOIS created equivalent mutants, some scenarios were discovered under which this
operator always creates equivalent mutants. These scenarios can be used to modify the AOIS
operator such that it does not create equivalent mutants. This will reduce the computational cost in
creating and executing the surplus mutants.

7.1.2 Scenarios for AOIS

Many situations were observed whilst determining equivalent mutants for AOIS. Some of these

situations always tend to create equivalent mutants. As a reminder, the AOIS operator works by
inserting pre-increment/decrement or post-increment/decrement operators. Most of the equivalent
mutants are created by post-increment/decrement operators. These have been chalked out below:

Original Program Equivalent Mutants
1 public class test {
2 public void abc() {
3 int var1, var2;
4 int result;
5 result = var1 + var2;
6 System.out.println(result);
7 }
8 }

1 public class test {
2 public void abc() {
3 int var1, var2;
4 int result;
5 result = var1 + var2;
6 System.out.println(result++);
6 System.out.println(result--);
7 }
8 }

Figure 21: Equivalent Mutants for method-level operator AOIS

 35

Two of the mutants created for this program are shown. Now, any change in the value of a
variable after it has been displayed will not make any change to the output produced by the mutant
when compared to the original program. Also, an equivalent mutant will be created if the variable,
whose value has been changed, is not being used after it has been displayed. An example of this
is:

Non-equivalent Mutant Equivalent Mutant
1 public class test {
2 public void abc() {
3 int var1, var2;
4 int result;
5 result = var1 + var2;
6 System.out.println(result++);
7 result = var1 * 10;
8 }
9 }

1 public class test {
2 public void abc() {
3 int var1, var2;
4 int result;
5 result = var1 + var2;
6 System.out.println(result++);
7 var1 += 10;
8 }
9 }

Figure 22: Scenario in which AOIS creates non-equivalent and equivalent mutants

For the non-equivalent mutant, the variable result is used again on line 7 after the use of the
AOIS operator on line 6. However, the variable result is not reused on line 7 for the equivalent
mutant.

In summary, whenever a post-increment/decrement operator is used to create a mutant, there
are two situations in which AOIS always creates equivalent mutants:

1. When the value of a variable is modified after it is displayed for output.
2. When the variable with the changed value is not modified by the code at any further

point in the mutant.

7.2 Evaluation of Class-level Mutation Operators

According to table 4 in chapter 6, MuJava created no mutants for the class-level mutation
operators PCC, PCD, JSD and EOA. An analysis has been performed for the remaining operators
namely, IHD, IHI, IOD, IOP, IOR, ISI, ISD, IPC, PNC, PMD, PPD, PCI, PRV, OMR, OMD, OAN,
JTI, JTD, JSI, JID, JDC, EOC, EAM and EMM. Like method-level operators, the graphs for class-
level operators have been divided in arbitrary groups of 4. The last graph depicts an analysis of the
operator PRV because it dominates all the other class-level mutation operators. The analysis for
these operators is explained in more detail below:

Figure 23: Evaluation of Class-level Operators IHD, IHI, IOD, IOP, IOR & ISI

Figure 23 shows an evaluation of the operators IHD, IHI, IOD, IOP, IOR and ISI.

 36

A relatively good number of mutants were created for IHD. Of all the mutants created, 71.43%
were equivalent. But all the mutants that were created were killed successfully. 100% mutation
score was achieved using the test set created.

IHI is another class-level operator belonging to the category of inheritance. 15 mutants were
created for IHI. 93.33% of the mutants that were created were killed successfully by the test set
created.

The number of mutants created for IOD was greater than those created for IHI or IHD. 14 of the
17 mutants created were killed successfully. Interestingly, only one mutant was found to be
equivalent. Interestingly, the same mutant was also found to be alive amongst the rest of the alive
mutants.

The mutants created for IOP were very few as compared to the other operators. But the
success achieved in killing these mutants is much greater than that for other operators. 100%
mutation score was achieved. None of the mutants created for IOP were equivalent. Also, none of
the mutants failed the software.

Only 2 mutants were created for IOR. All the mutants created were equivalent. None of these
mutants were killed successfully. Also, none of them failed MuJava.

ISI works by inserting the super keyword so that any call to the variable being referenced goes
to the parent class variable. ISI depicted behaviour similar to that of IOR. Although the number of
mutants created for IOR was slightly more than those created for ISI, all the mutants that were
created for both operators turned out to be equivalent. MuJava killed none of the mutants.

Figure 24: Evaluation of Class-level Operators ISD, IPC, PNC, PMD, PPD & PCI

Figure 24 shows an evaluation of the operators ISD, IPC, PNC, PMD, PPD and PCI.
Very few mutants were created for ISD. None of these mutants were killed. Also, none of the

mutants failed. But 100% of the mutants created were equivalent.
Only 1 mutant was created for PNC. But the test set successfully detected the fault in this

mutant and killed it. This mutant was non-equivalent.
However, PMD exhibited totally different behaviour. A considerable number of mutants were

created for PMD as compared to ISD, IPC and PNC. Yet, MuJava killed no mutants. 90% of the
mutants that were left alive failed the software. The remaining 10% were equivalent. Of all the
class-level operators examined till now, PMD is the first operator which failed the software.

This graph in figure 24 shows that only one mutant was created for PPD. However, this mutant
was not found to be equivalent. It was hard to kill.

In contrast, some of the mutants were created for PCI were killed. It also shows that all the
mutants that were created were equivalent. MuJava successfully killed 33.33% of those mutants.

 37

Figure 25: Evaluation of Class-level Operators OMR, OMD, OAN, JTI & JTD

Figure 25 shows an evaluation of the operators OMR, OMD, OAN, JTI and JTD. This figure is

interesting in the sense that it appears that these operators created a considerably greater number
of mutants as compared to the operators in figures 23 and 24. But the highest scale on the y axis is
only 5. So it can be justifiably said that a very small number of mutants were created for operators
OMR, OMD, OAN, JTI and JTD as well.

All the mutants created for OMR were killed successfully. 100% mutation score was achieved.
None of these mutants were found to be equivalent. Also, none of the mutants created failed the
software.

OMD exhibits similar behaviour as OMR. Figure 25 shows that 100% mutation score was
achieved for OMD. All the mutants that were created have been killed using MuJava.

The behaviour exhibited by OAN was very different. The figure shows that 75% of the mutants
that were created for OAN were killed. 25% of the mutants that were killed were equivalent. The
remaining 25% mutants were left alive at the end of test case execution and were also found to be
equivalent.

JTI and JTD show identical behaviour as seen in figure 25. All the mutants that were created
for JTI and JTD were killed. This means that 100% mutation score was achieved for JTI and JTD
using MuJava. None of the mutants were found to be equivalent. Also, none of them failed the
software.

Figure 26: Evaluation of Class-level Operators JSI, JID, JDC, EOC, EAM & EMM

 38

Figure 26 shows an evaluation of the operators JSI, JID, JDC, EOC, EAM and EMM.
JSI was one of the class-level mutation operators for which a considerably large number of

mutants was created. 80% of the mutants created were found to be equivalent. But 87.5% of the
total number of mutants were killed successfully. All the mutants that were left alive were found to
be equivalent. None of the mutants failed the software.

JID revealed very different behaviour than JSI. Figure 26 shows that MuJava killed 50% of the
mutants that were created for JID. But, interestingly, all the mutants were found to be equivalent.

JDC also created a good number of mutants. All the mutants that were created were found to
be equivalent. None of the mutants were killed by the test set thus giving a mutation score of 0%.

EOC is another operator which created a very small number of mutants. However, all the
mutants that were created for EOC were killed by MuJava to achieve a mutation score of 100%.
None of the mutants were equivalent.

EAM and EMM exhibit identical behaviour as shown in figure 26. All the mutants that were
created for both the operators were killed successfully using MuJava. Thus, a mutation score of
100% was achieved. Also, none of the mutants were equivalent.

Figure 27: Evaluation of Class-level Operator PRV

Of all the class-level mutation operators, PRV exhibits the most interesting behaviour. The

majority of mutants were created for this operator. However, an alarming 42.93% of these mutants
failed the software. Of the remaining mutants, 81.07% mutants were killed. The rest of the mutants
were found to be equivalent as depicted in figure 18. Also, of the non-equivalent mutants, 7.6%
were hard to kill mutants.

7.2.1 Summary of Class-level Mutation operators

The following table summarizes the behaviour of class-level mutation operators. It shows the
percentage of mutants killed for each mutation operator. It also indicates the percentage of non-
equivalent mutants against the percentage of equivalent mutants.

 39

Class-level Operators Percentage of Mutants
Killed

Percentage of Non-
equivalent Mutants

Percentage of
Equivalent Mutants

IHD 100% 28.57% 71.43%
IHI 93.33% 20% 80%
IOD 82.35% 94.12% 5.88%
IOP 100% 100% 0%
IOR 0% 0% 100%
ISI 0% 0% 100%
ISD 0% 0% 100%
IPC 0% 0% 100%
PNC 100% 100% 0%
PMD 0% 0% 100%
PPD 0% 0% 0%
PCI 33.33% 0% 100%
PRV 81.07% 82.52% 17.48%
OMR 100% 100% 0%
OMD 100% 100% 0%
OAN 75% 50% 50%
JTI 100% 100% 0%
JTD 100% 100% 0%
JSI 87.5% 20% 80%
JID 50% 0% 100%
JDC 0% 0% 100%
EOA 100% 100% 0%
EAM 50% 100% 0%
EMM 50% 100% 0%

Table 6: Analysis Summary of Class-level Mutation Operators

As opposed to method-level mutation operators, class-level operators created a considerably
large number of equivalent mutants. This is due to the design of the operators which affected the
operation of the sample programs.

This table shows that 14 of the 24 class-level operators created mutants which were
equivalent. An interesting observation made was that operators ISI, ISD and IPC, which created
only one mutant each, were found to be equivalent. Hence, the discovery of 100% of equivalent
mutants is not as alarming as it may seem when compared to other class-level operators.

The maximum number of mutants (361) was created for PRV as indicated in table 4 chapter 6.
This number raises an immediate concern that since these mutants form the majority of the
mutants created, they are most probable to be equivalent. But interestingly, a large number of
these mutants failed MuJava as discussed earlier. Of the remaining mutants, 81.06% were killed
successfully. Also, of all the mutants created for PRV, 17.48% were found to be equivalent.

It can be seen that operators JID and JDC created mutants which were all equivalent. It is
interesting to note that these operators work by deleting variable initialization or creating default
constructors, respectively.

Of the remaining operators, the greatest percentage of equivalent mutants belonged to
operators IHD, IHI and JSI. This indicates that more equivalent mutants created for programs
which make use of variable shadowing, method overriding and use of static keyword.

In addition to determining which operators create equivalent mutants, some operators also
failed MuJava. These operators are PMD and PRV. Of these, almost 42.93% mutants created for
PRV failed. However, the number of mutants created for PMD was significantly small as compared
to PRV, almost 95% of those failed MuJava.

Like AOIS, some scenarios were discovered for the class-level operators as well under which

these operators always create equivalent mutants. These scenarios can be used to modify the
concerned operators such that they do not create equivalent mutants. This will reduce the
computational cost in creating and executing the surplus mutants.

 40

7.2.2 Scenarios

The majority of the class-level operators created equivalent mutants. Some scenarios have

been sketched out for some of these operators. These scenarios depict situations which will
always create equivalent mutants.

7.2.2.1 IHD

The operator IHD works by deleting a hiding variable in a subclass. One situation has been

identified when IHD always creates an equivalent mutant.

Original Program Equivalent Mutants
Public class LinkedList {
 protected ListNode start;
 protected int size;
 public LinkedList() { …… }
 public insert(int var) { …… }
 ……
}

public class Stack extends LinkedList {
 protected ListNode start;
 protected int size;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 size++;
 }
 ……
}

Public class LinkedList {
 protected ListNode start;
 protected int size;
 public LinkedList() { …… }
 public insert(int var) { …… }
 ……
}

public class Stack extends LinkedList {
// protected ListNode start;
 protected int size;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 size++;
 }
 ……
}

Figure 28: Scenario in which IHD creates equivalent mutants

Whenever the initialization of a variable is deleted in a subclass, the subclass makes use of the
initialization in the parent class. If this initialization is the same in both the parent and the child
class, the mutant is equivalent.

7.2.2.2 IHI

The operator IHI works by inserting a hiding variable in a subclass. One situation has been

identified when IHI always creates an equivalent mutant.

Original Program Equivalent Mutants
Public class LinkedList {
 protected ListNode start;
 protected int size;
 public LinkedList() { …… }
 public insert(int var) {
 start = newNode;
 size++;
 ……
 }
 ……
}

public class Stack extends LinkedList {
 protected ListNode start;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 ……
 }
 ……
}

Public class LinkedList {
 protected ListNode start;
 protected int size;
 public LinkedList() { …… }
 public insert(int var) {
 start = newNode;
 size++;
 ……
 }
 ……
}

public class Stack extends LinkedList {
 protected ListNode start;
 protected int size;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 ……
 }
 ……
}

Figure 29: Scenario in which IHI creates equivalent mutants
 41

IHI always creates an equivalent mutant when the initialization of a variable is inserted in a
subclass and the subclass is not using this variable in any of its functions.

7.2.2.3 IOR

IOR always creates equivalent mutants when the methods which have been renamed are not

called elsewhere in the program. Hence, any change in the name of the function, will not affect the
functioning of the rest of the programs. However, it is easy to note that if this same function is
called in the main program, it will cause an error and therefore, fail the mutant.

7.2.2.4 PRV

PRV created a large number of equivalent mutants. The situation which caused this is

explained more clearly in the example below:

Original program Equivalent Mutant
public class Stack extends LinkedList {
 protected ListNode start;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 end = newNode;
 }
 ……
}

public class Stack extends LinkedList {
 protected ListNode start;
 public Stack(){ …… }
 public insert(int var) {
 start = newNode;
 end = start;
 }
 ……
}

Figure 30: Scenario in which PRV creates equivalent mutants

Whenever an object reference is referred to other compatible types, sometimes the value of the
new object is the same as the value of the object reference in the source program. In the example,
the values of objects start and end are the same. Hence, making the object end to point to the
object start will produce an equivalent mutant.

7.2.2.5 JID

This operator deletes the initialization of instance variables. JID always creates an equivalent

mutant when the initialization of a variable is set to the default value of the particular variable. For
example:

Original program Equivalent mutant
public class Stack extends LinkedList {
 int size = 0;
 ……
}

public class Stack extends LinkedList {
 int size;
 ……
}

Figure 31: Scenario in which JID creates equivalent mutants

Original program Non-equivalent mutant
public class Stack extends LinkedList {
 int size = 10;
 ……
}

public class Stack extends LinkedList {
 int size;
 ……
}

Figure 32: Scenario in which JID will never create an equivalent mutant

7.2.2.6 JDC

This operator deletes the user-defined default constructor and makes use of Java’s default

constructor. JDC will create an equivalent mutant whenever the operations performed in the default
constructor are simple initializations to the default values of the variables. If the variables or objects
are initialized to values other than their default values, no equivalent mutants will be created.
Below is an example explaining this scenario:

 42

Original program Equivalent mutant
public class LinkedList {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedList(){
 start = null; end = null; size = 0;
 }
 ……
}

public class LinkedList {
 protected ListNode start;
 protected ListNode end;
 protected int size;
/* public LinkedList(){
 start = null; end = null; size = 0;
 }*/
 ……
}

Figure 33: Scenario in which JDC creates equivalent mutant

Original program Non-equivalent mutant
public class LinkedList {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedList(){
 start = null; end = null; size = 20;
 }
 ……
}

public class LinkedList {
 protected ListNode start;
 protected ListNode end;
 protected int size;
/* public LinkedList(){
 start = null; end = null; size = 20;
 }*/
 ……
}

Figure 34: Scenario in which JDC will never create an equivalent mutant

In summary, there are always some situations which create equivalent mutants. The study of

mutation operators has helped identify those situations. Also, sometimes, some operators also
make certain changes to the original program in such a way that they cause MuJava to fail.

 43

8. CONCLUSION AND FUTURE WORK

Detailed work has been carried out to determine which mutation operators contribute more
towards creating equivalent mutants. The following results were obtained:

 Method-level operators:
o The majority of mutants were created for AOIS, ROR and LOI.
o Almost half of the mutants created for AOIS were found to be equivalent.
o However, majority of the mutants created for ROR and LOI were killed successfully.
o All the mutants created for COI failed the software.

 Class-level operators:
o Majority of mutants were created for PRV, JSI, IHI and IOD.
o Almost 50% of the mutants created for PRV, failed the software. Of the remaining

mutants, almost 80% were killed and the remaining were found to be equivalent.
o Nearly 95% of the mutants created for PMD caused MuJava to fail.
o All the mutants created for JDC were found to be equivalent.
o Many class-mutation operators such as IOR, ISI, etc, which created a very low

number of mutants, were found to be equivalent.

Various scenarios have been sketched out for method-level operator AOIS and class-level
operators IHD, IHI, IOR, PRV, JID and JDC. These scenarios indicate situations which always
create equivalent mutants.

Looking at these results, different conclusions can be made for method-level mutation
operators and class-level mutation operators. For method-level operators, AOIS is more probable
to create equivalent mutants. For class-level operators, PRV usually creates the greatest number
of mutants. But most of these mutants are simply program failures. Also, operators that create a
very low number of mutants as compared to other class-level operators are also most likely to
create equivalent mutants.

For the future work of this project, the operators that create a larger number of equivalent

mutants can be tweaked such that they do not create equivalent mutants. This can be done by
using the scenarios sketched out in chapter 7. These scenarios can be incorporated in the
algorithms implemented for the concerned operators. Thus, the creation of equivalent mutants can
be avoided.

 44

APPENDIX A – USER GUIDE for MuJava

MuJava requires 2 jar files and one config file. These files can be found at:

http://ise.gmu.edu/~ofut/mujava/

These 2 files, (mujava.jar & adaptedOJ.jar) should be placed in the same directory. Lets assume
the directory is C:\MuJava\.
Before executing the software, the following steps should be taken:

1. Your computer must have a JRE installed and the Java path set. To learn how to do this
refer to the java.sun.com website for details.

2. After this, firsts et the classpath using the following command:

set CLASSPATH=%CLASSPATH%;C:\mujava\mujava.jar;C:\mujava\adaptedOJ.jar;C:\j2sdk1.4.0_01\lib\tools.jar;C:\mujava\classes

This command allows you to run MuJava to create mutants. To run test cases a different path must
be set which is explained later.

3. After this open the mujava.config file. You should see ‘MuJava_HOME=C:\ofut\mujava’.
Change this to point to ‘MuJava_HOME=C:\MuJava_Home’. This command tells MuJava
where to find the source files and the test programs when executing MuJava.

4. Now we need to make a directory structure for MuJava. All the source programs and test
programs will be contained in this directory structure. This structure can be made either
manually or by using the command:

java mujava.makeMuJavaStructure

The directory structure will now look like:
C:\MuJava_Home\classes
C:\MuJava_Home\testset
C:\MuJava_Home\src
C:\MuJava_Home\result

Now, you will have 2 different directories; one will be ‘C:\MuJava’ and the other will have
‘C:\MuJava_Home\’. The config file should be in the directory of MuJava.

Creating Mutants

1. Create your source file (say ‘AccessorModifier.java’) that you want to test in
C:\MuJava_Home\src.

2. Compile this file using the DOS prompt and the command ‘javac AccessorModifier.java’. This
command will create a class file in the folder C:\MuJava_Home\src\.

3. Remove this file from the C:\MuJava_Home\src\ and copy it to the folder
C:\MuJava_Home\classes\.

4. Now change the path in the dos prompt to point to C:\MuJava\ instead of
C:\MuJava_Home\src\.

5. Now set the classpath using:

set classpath=%classpath%;c:\MuJava\mujava.jar;c:\MuJava\adaptedOj.jar;c:\J2ee\jdk\lib\tools.jar;c:\MuJava_Home\classes;

6. Then use the following command to start MuJava:
java mujava.gui.GenMutantsMain

7. Now select the programs from the list shown for which you want to create the mutants. Also

select the mutation operators for which you want to create mutants. Then press ‘Generate’.
Whilst mutants are being generated, many messages will be sent to the command prompt
in the background. The ‘Generate’ button will be disabled. When all the mutants have been
generated, this button will turn yellow again and the different mutants that have been
generated can then be viewed.

 45

http://ise.gmu.edu/%7Eofut/mujava/

Figure 35: Creating Mutants using MuJava

The mutants that are created for each type of operator can be viewed by navigating through
the tabs of ‘Class Mutants Viewer’ or ‘Traditional Mutants Viewer’.

 46

Figure 36: Class Mutants Viewer in MuJava

Figure 37: Traditional Mutants Viewer in MuJava

 47

All the mutants that are created can also be found in the directory C:\MuJava_Home\result\.

Creating Test Cases to kill Mutants

Next we need to create test cases to kill the mutants that have been created. MuJava requires
these test programs to be written in a specific format. Lets assume we have a program
‘AccessorModifier.java’ such as:

public class AccessorModifier {

 public String AccessorSet(int x1, int y1) {

 String result = "";
 Points p1 = new Points();

 p1.setX(x1);
 p1.setY(y1);

 result = result.concat(Integer.toString(p1.getX()));
 result = result.concat(Integer.toString(p1.getY()));
 return result;
 }
}

The important thing to note is that the original program should not have any main function. It is not
necessary that the function in the main program should return a string value. But we need at least
one function in the original program that returns a string value. This function should represent the
data variables used in the original program such that it simply converts/ returns the string value of
all the variables we are interested in testing. This is compulsory because MuJava analyses the
string values return to determine if the mutant has been killed or not.
The test case for this program should look like this:
public class AccessorModifierTest
{
 public String test1()
 {
 String result = "";
 AccessorModifier obj = new AccessorModifier();
 result = obj.AccessorSet(1, 1);
 return result;
 }

 public String test2()
 {
 String result = "";
 AccessorModifier obj = new AccessorModifier();
 result = obj.AccessorSet(1, 2);
 return result;
 }
 public String test3()
 {
 String result = "";
 AccessorModifier obj = new AccessorModifier();
 result = obj.AccessorSet(-1, -1);
 return result;
 }
}

For the program that contains the test cases, each test case must be written as a separate
function. The name of this function must begin with ‘test’. Also, each test case must return a string
value as result. The value of this string variable (in our case ‘result’), is computed by calling the
methods in the main program that return string values as well. You can concatenate the values

 48

returned by multiple functions using the operator ‘+’. The access modifier for each of the test
methods and the test program should be public.
After writing the test program, save it in the folder C:\MuJava_Home\src\. Compile this file using the
DOS prompt and the command ‘javac AccessorModifierTest.java’. This command will create a class
file in the folder C:\MuJava_Home\src\. There will be more than one class file created for this
program (in our case ‘AccessorModifierTest.class, AccessorModifier.class’). Remove these files and
copy them to the folder C:\MuJava_Home\testset\.

Killing Mutants

1. Open a new DOS prompt window. Change the path to C:\MuJava\ to kill the mutants.
2. The catch when killing the mutants is that the classpath needs to be changed such that it

does not point to MuJava classes anymore. The classpath therefore becomes:

set classpath=%classpath%;c:\MuJava\mujava.jar;c:\MuJava\adaptedOj.jar;c:\J2ee\jdk\lib\tools.jar;

3. Then use the following command to start MuJava again to kill the mutants:
java mujava.gui.RunTestMain

4. Now select the original program from the dropdown list for which mutants have been

created already. From the second dropdown list select the corresponding test program.
Also, select if you want to apply to the traditional mutants only, or to the class mutants only
or to both. Then press ‘Execute’. Whilst test cases are run against the original program,
many messages will be sent to the command prompt in the background. The ‘Execute’
button will be disabled. When test cases have finished completion, this button will turn
yellow again. Statistics will be shown indicating the number of mutants killed, the mutants
left alive and the mutation score.

Figure 38: Killing Mutants using MuJava

 49

APPENDIX B – Programs written for MuJava (source code)

Method-level Mutation Operators
The programs written in this section were developed to create mutants for method-level operators
in MuJava. They were written arbitrarly. Test cases written for all the programs are also included.

ArithOper.java
/* @author: Maryam Umar */
public class ArithOper {

public String oper(int i){
int val = 1 + 2 + 3*i + (4 + 8)/3;

 String result = "";
 result = Integer.toString(val);
 return result;
 }
}

ArithOperTest.java
/* @author: Maryam Umar */
public class ArithOperTest{

public String test1(){
String result = "";
ArithOper obj = new ArithOper();

 result = result + obj.oper(0);
 return result;
 }

public String test2(){
 String result = "";
 ArithOper obj = new ArithOper();
 result = result + obj.oper(1);
 return result;
 }

public String test3(){
 String result = "";
 ArithOper obj = new ArithOper();
 result = result + obj.oper(2);
 return result;
 }

public String test4(){
String result = "";
ArithOper obj = new ArithOper();

 result = result + obj.oper(3);
 return result;
 }
}

AssignOper.java
/* @author: Maryam Umar */
public class AssignOper {

public String operation(int i){
 String result = "";
 i += 10;
 result = Integer.toString(i);
 return result;
 }
}

AssignOperTest.java
/* @author: Maryam Umar */
public class AssignOperTest{

public String test1(){
 String result = "";
 AssignOper obj = new AssignOper();
 result = result + obj.operation(0);
 return result;
 }
 public String test2(){
 String result = "";
 AssignOper obj = new AssignOper();

 50
 result = result + obj.operation(1);

 return result;
 }
 public String test3(){
 String result = "";
 AssignOper obj = new AssignOper();
 result = result + obj.operation(10);
 return result;
 }
}

CondOper.java
/* @author: Maryam Umar */
public class CondOper {

public String LogicOper(int a, int b, int c){
 String result = "";
 if(a > b && b > c)
 result = Integer.toString(a);
 else if(b > a && b > c)
 result = Integer.toString(b);
 else
 result = Integer.toString(c);
 return result;
 }
}

CondOperTest.java
/* @author: Maryam Umar */
public class CondOperTest{
 public String test1(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(0, 1, 2);
 return result;
 }
 public String test2(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(0, 2, 1);
 return result;
 }
 public String test3(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(1, 0, 2);
 return result;
 }
 public String test4(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(1, 2, 0);
 return result;
 }
 public String test5(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(2, 0, 1);
 return result;
 }
 public String test6(){
 String result = "";
 CondOper obj = new CondOper();
 result = result + obj.LogicOper(2, 1, 0);
 return result;
 }
}

LogicalOper.java
/* @author: Maryam Umar */
public class LogicalOper {
 public String operation(int i, int j){
 String result = "";

 51
 int val;

 val = i & j;
 result = Integer.toString(val);
 return result;
 }
}

LogicalOperTest.java
/* @author: Maryam Umar */
public class LogicalOperTest{
 public String test1(){
 String result = "";
 LogicalOper obj = new LogicalOper();
 result = result + obj.operation(10, 10);
 return result;
 }
 public String test2(){
 String result = "";
 LogicalOper obj = new LogicalOper();
 result = result + obj.operation(10, 20);
 return result;
 }
 public String test3(){
 String result = "";
 LogicalOper obj = new LogicalOper();
 result = result + obj.operation(1, 1);
 return result;
 }
}

RelOper.java
/* @author: Maryam Umar */
public class RelOper {
 public String Condition(int a, int b, int c){
 String result = "";
 if(a > b){
 if(b > c)
 result = Integer.toString(a);
 }
 else if(b > a){
 if(b > c)
 result = Integer.toString(b);
 }
 else
 result = Integer.toString(c);
 return result;
 }
}

RelOperTest.java
/* @author: Maryam Umar */
public class RelOperTest{
 public String test1(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(0, 1, 2);
 return result;
 }
 public String test2(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(0, 2, 1);
 return result;
 }
 public String test3(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(1, 0, 2);
 return result;
 }
 public String test4(){

 52
 String result = "";

 RelOper obj = new RelOper();
 result = result + obj.Condition(2, 1, 0);
 return result;
 }
 public String test5(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(1, 1, 2);
 return result;
 }
 public String test6(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(7, 5, 5);
 return result;
 }
 public String test7(){
 String result = "";
 RelOper obj = new RelOper();
 result = result + obj.Condition(5, 7, 7);
 return result;
 }
}

ShiftOper.java
/* @author: Maryam Umar */
public class ShiftOper {
 public String operation(int i){
 String result = "";
 int val;
 val = i << 2;
 result = Integer.toString(val);
 return result;
 }
}

ShiftOperTest.java
/* @author: Maryam Umar */
public class ShiftOperTest{
 public String test1(){
 String result = "";
 ShiftOper obj = new ShiftOper();
 result = result + obj.operation(20);
 return result;
 }
 public String test2(){
 String result = "";
 ShiftOper obj = new ShiftOper();
 result = result + obj.operation(10);
 return result;
 }
}

Class-level Mutation Operators
The programs written in this section were developed to create mutants for class-level operators in
MuJava. They were written arbitrarly keeping in mind that they included the features required to
create mutants for the specific mutation operators. Test cases written for all the programs are also
included.

Points.java
/* @author: Maryam Umar */
public class Points {
 int x; int y;
 public Points(){
 x = 0;
 y = 0;
 }
 public int getX() {
 return x;
 }

 53

 public int getY() {
 return y;
 }
 public void setX(int x) {
 this.x = x;
 }
 public void setY(int y) {
 this.y = y;
 }
}

AccessorModifier.java
/* @author: Maryam Umar */
public class AccessorModifier {
 public String AccessorSet(int x1, int y1) {
 String result = "";
 Points p1 = new Points();
 p1.setX(x1);
 p1.setY(y1);
 result = result.concat(Integer.toString(p1.getX()));
 result = result.concat(Integer.toString(p1.getY()));
 return result;
 }
}

AccessorModifierTest.java
/* @author: Maryam Umar */
public class AccessorModifierTest {
 public String test1() {
 String result = "";
 AccessorModifier obj = new AccessorModifier();
 result = obj.AccessorSet(1, 1);
 return result;
 }
 public String test2() {
 String result = "";

 AccessorModifier obj = new AccessorModifier();
 result = obj.AccessorSet(1, 2);
 return result;
 }
}

EOCMain.java
/* @author: Maryam Umar */
public class EOCMain {

public String EOCMain(int i, int j) {
 Integer x = new Integer(i);
 Integer y = new Integer(j);
 if(x == y)
 return "0";
 else
 return "1";
 }
}

EOCMainTest.java
/* @author: Maryam Umar */
public class EOCMainTest {
 public String test1() {
 String result = "";
 EOCMain obj = new EOCMain();
 result = result + obj.EOCMain(-1, -1);
 return result;
 }
}

ListNode.java
/* @author: Maryam Umar */
public class ListNode {
 protected int data = 0;

 54
 protected ListNode nextPtr = null;

 public ListNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 data = obj;
 }
}

LinkedList.java
/* @author: Maryam Umar */
public class LinkedList {

protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedList(){
 start = null;
 end = null;
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(start == null){
 start = newNode;
 end = newNode;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;

 55
 }

 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

Stack.java
/* @author: Maryam Umar */
public class Stack extends LinkedList {

protected int size; protected ListNode end;
 public Stack(){
 size = 0;
 end = null;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(size == 0){
 start = newNode;
 end = start;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)

 56

 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

CloneMain.java
/* @author: Maryam Umar */
public class CloneMain {

public String Clonemain() {
 String result = "";
 Stack st1, st2;
 st1 = new Stack();
 st2 = st1;
 st1.addElement(1);
 st1.addElement(2);
 st1.addElement(3);
 st1.addElement(4);
 result = result + st1.removeNode();
 return result;
 }
}

CloneMainTest.java
/* @author: Maryam Umar */
public class CloneMainTest {

public String test1() {
 String result = "";

 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {

String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedList st = new LinkedList();

 57

 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }

public String test4() {
String result = "";

 LinkedList l1 = new LinkedList();
 LinkedList l2 = new LinkedList();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;
 }
 public String test6() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test7() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 Stack st = new Stack();
 Stack st2 = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;

}
 public String test9() {

 String result = "";
 CloneMain st = new CloneMain();
 result = result + st.Clonemain();
 return result;
 }
}

 58

PNC.java
/* @author: Maryam Umar */
public class PNC {

public String PNCmain() {
 String result = "";
 LinkedList ll;
 ll = new LinkedList();
 ll.addElement(1);
 ll.addElement(2);
 ll.addElement(3);
 result = result + ll.removeNode(3) + ll.ConvertToString();
 return result;
 }
}

PNCTest.java
/* @author: Maryam Umar */
public class PNCTest {

public String test1() {
 String result = "";

 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {

 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {

String result = "";
 LinkedList l1 = new LinkedList();
 LinkedList l2 = new LinkedList();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;

}
 public String test6() {

 59
 String result = "";

 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test7() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 Stack st = new Stack();
 Stack st2 = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 PNC p = new PNC();
 result = result + p.PNCmain();
 return result;
 }
}

ParameterVariablePPD.java
/* @author: Maryam Umar */
public class ParameterVariablePPD {

public static void ParameterVariable(Stack s){
 s.addElement(1);
 s.addElement(2);
 s.addElement(3);
 s.addElement(4);
 }
 public String ParameterMain() {
 String result = "";
 Stack st = new Stack();
 ParameterVariable(st);
 result = result + st.removeNode() + st.ConvertToString();
 return result;
 }
}

ParameterVariableTest.java
/* @author: Maryam Umar */
public class ParameterVariableTest {

public String test1() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);

 60
 st.addElement(4);

 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test3() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedList l1 = new LinkedList();
 LinkedList l2 = new LinkedList();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;
 }
 public String test6() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 Stack st = new Stack();
 Stack st2 = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);

 61
 st2.addElement(5);

 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 ParameterVariablePPD st = new ParameterVariablePPD();
 result = result + st.ParameterMain();
 return result;
 }
}

TypeCastOperatorTCO.java
/* @author: Maryam Umar */
public class TypeCastOperatorTCO {

public String TypeMain() {
 String result = "";
 Stack st = new Stack();
 LinkedList ll = st;
 ((Stack)ll).addElement(1);
 ((Stack)ll).addElement(2);
 ((Stack)ll).addElement(3);
 ((Stack)ll).addElement(4);
 ((Stack)ll).addElement(5);
 result = result + st.removeNode() + st.ConvertToString();
 return result;
 }
}

TypeCastOperatorTest.java
/* @author: Maryam Umar */
public class TypeCastOperatorTest {

public String test1() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }

public String test3() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedList l1 = new LinkedList();
 LinkedList l2 = new LinkedList();
 l1.addElement(1);
 l2.addElement(4);

 62
 l1.addElement(2);

 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;

}
 public String test6() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 Stack st = new Stack();
 Stack st2 = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 TypeCastOperatorTCO TCO = new TypeCastOperatorTCO();
 result = result + TCO.TypeMain();
 return result;
 }
 public String test10() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test11() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);

 63
 st.addElement(2);

 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
}

OverridingMethodDelete.java
/* @author: Maryam Umar */
public class OverridingMethodDelete {

public String StackMain() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 result = result + st.removeNode();
 return result;
 }
}

OverridingMethodDeleteTest.java
/* @author: Maryam Umar */
public class OverridingMethodDeleteTest {

public String test1() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test3() {
 String result = "";
 LinkedList st = new LinkedList();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedList l1 = new LinkedList();
 LinkedList l2 = new LinkedList();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 Stack st = new Stack();

 64
 st.addElement(1);

 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;

}
 public String test6() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test7() {
 String result = "";
 Stack st = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 Stack st = new Stack();
 Stack st2 = new Stack();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 OverridingMethodDelete TCO = new OverridingMethodDelete();
 result = result + TCO.StackMain();
 return result;
 }
}

LinkedListThis.java
/* @author: Maryam Umar */
public class LinkedListThis {

protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListThis(){
 start = null;
 end = null;
 size = 0;
 }
 public void setSize(int s){
// size = s;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 start = newNode;
 end = newNode;
 size++;
 }

 65
 else{

 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)

 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 size++;
 }
 else {
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 size++;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;

 66
 String result = "";

 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StackThis.java
/* @author: Maryam Umar */
public class StackThis extends LinkedListThis {
 public StackThis(){
 end = null;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(size == 0){
 start = newNode;
 end = start;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;

 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }

public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

 67

ThisKeywordMain.java
/* @author: Maryam Umar */
public class ThisKeywordMain {
 public String ThisMain() {
 String result = "";
 StackThis st = new StackThis();
 st.setSize(4);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.setSize(8);
 st.addElement(5);
 result = result + st.ConvertToString();
 return result;
 }
}

ThisKeywordMainTest.java
/* @author: Maryam Umar */
public class ThisKeywordMainTest {
 public String test1() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.setSize(3);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.setSize(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListThis l1 = new LinkedListThis();
 LinkedListThis l2 = new LinkedListThis();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackThis st = new StackThis();
 st.addElement(1);

 68
 st.addElementAfter(2, 1);

 result = result + st.removeNode();
 return result;
 }
 public String test6() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test8() {
 String result = "";
 LinkedListThis st = new LinkedListThis();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 st.removeNode(3);
 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListStatic.java
/* @author: Maryam Umar */
public class LinkedListStatic {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListStatic(){
 start = null;
 end = null;
 size = 0;
 }
 public void setSize(int size){
// size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();

 ListNode newNode = new ListNode(obj);
 if(start == null){
 start = newNode;
 end = newNode;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;

 69
 while(temp != null){

 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

 70

StackStatic.java
/* @author: Maryam Umar */
public class StackStatic extends LinkedListStatic {
 protected ListNode end; //corresponds to Top of Stack
 protected int maxsize;
 public StackStatic(){
 end = null;
 size = 0;
 }
 public void setSize(int size){
 maxsize = size;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(size < maxsize){
 if(start == null){
 start = newNode;
 end = start;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StaticKeywordMain.java
/* @author: Maryam Umar */

 71
public class StaticKeywordMain {

 public String StaticMain() {
 String result = "";
 StackStatic st = new StackStatic();
 st.setSize(4);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode();
 return result;
 }
}

StaticKeywordMainTest.java
/* @author: Maryam Umar */
public class StaticKeywordMainTest {
 public String test1() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.setSize(3);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.setSize(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.setSize(3);
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListStatic l1 = new LinkedListStatic();
 LinkedListStatic l2 = new LinkedListStatic();
 l1.setSize(3);
 l2.setSize(3);
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackStatic st = new StackStatic();
 st.setSize(2);
 st.addElement(1);
 st.addElementAfter(2, 1);

 72
 result = result + st.removeNode();

 return result;
 }

public String test6() {
 String result = "";
 StackStatic st = new StackStatic();
 st.setSize(2);
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test7() {
 String result = "";
 StackStatic st = new StackStatic();
 st.setSize(3);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.setSize(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }
 public String test8() {
 String result = "";
 StackStatic st = new StackStatic();
 StackStatic st2 = new StackStatic();
 st.setSize(3);
 st2.setSize(3);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 StaticKeywordMain st = new StaticKeywordMain();
 result = result + st.StaticMain();
 return result;
 }
 public String test10() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test11() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test12() {
 String result = "";

 73
 StackStatic st = new StackStatic();

 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.removeNode();
 result = result + st.ConvertToString();
 return result;
 }
 public String test13() {
 String result = "";
 LinkedListStatic st = new LinkedListStatic();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 st.removeNode(3);
 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListIOR.java
/* @author: Maryam Umar */
public class LinkedListIOR {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListIOR(){
 start = null;
 end = null;
 }
 public void setSize(){
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 setSize();
 start = newNode;
 end = newNode;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;

 74
 temp = temp.nextPtr;

 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StackIOR.java
/* @author: Maryam Umar */
public class StackIOR extends LinkedListIOR {
 protected ListNode end; //corresponds to Top of Stack
 public void setSize(){
 size = 0;
 end = null;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 setSize();
 start = newNode;
 end = start;
 size++;

 75
 }

 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

OverriddenMethodRename.java
/* @author: Maryam Umar */
public class OverriddenMethodRename {
 public String OverMain() {
 String result = "";
 StackIOR st = new StackIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 result = result + st.removeNode();
 return result;
 }
}

OverriddenMethodRenameTest.java
/* @author: Maryam Umar */
public class OverriddenMethodRenameTest {
 public String test1() {
 String result = "";
 LinkedListIOR st = new LinkedListIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);

 76
 st.addElement(4);

 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListIOR st = new LinkedListIOR();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListIOR st = new LinkedListIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListIOR l1 = new LinkedListIOR();
 LinkedListIOR l2 = new LinkedListIOR();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackIOR st = new StackIOR();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;
 }
 public String test6() {
 String result = "";
 StackIOR st = new StackIOR();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 StackIOR st = new StackIOR();
 StackIOR st2 = new StackIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test8() {
 String result = "";
 StackIOR st = new StackIOR();
 st.addElement(1);

 77
 st.addElement(2);

 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 LinkedListIOR st = new LinkedListIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test10() {
 String result = "";
 StackIOR st = new StackIOR();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(3);
 st.removeNode();
 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListSuper.java
/* @author: Maryam Umar */
public class LinkedListSuper {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListSuper(){
 start = null;
 end = null;
 }
 public void setSize(){
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 setSize();
 start = newNode;
 end = newNode;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;

 78
 ListNode prevTemp = null;

 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StackSuper.java
/* @author: Maryam Umar */
public class StackSuper extends LinkedListSuper {
 protected ListNode end; //corresponds to Top of Stack
 public StackSuper(){
 end = null;
 }
 public void setSize(){
 size = 0;
 }
 public void addElement(int obj){

 79
 if (obj == 0)

 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 super.setSize();
 start = newNode;
 end = start;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

SuperKeyword.java
/* @author: Maryam Umar */
public class SuperKeyword {
 public String SuperMain() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 result = result + st.removeNode();
 return result;
 }
}

SuperKeywordTest.java
/* @author: Maryam Umar */
public class SuperKeywordTest {

 80
public String test1() {

 String result = "";
 LinkedListSuper st = new LinkedListSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListSuper st = new LinkedListSuper();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListSuper st = new LinkedListSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListSuper l1 = new LinkedListSuper();
 LinkedListSuper l2 = new LinkedListSuper();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;
 }
 public String test6() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;
 }

 81
 public String test8() {

 String result = "";
 StackSuper st = new StackSuper();
 StackSuper st2 = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 SuperKeyword st = new SuperKeyword();
 result = result + st.SuperMain();
 return result;
 }
 public String test10() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test11() {
 String result = "";
 LinkedListSuper st = new LinkedListSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test12() {
 String result = "";
 StackSuper st = new StackSuper();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(3);
 st.removeNode();
 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListOM.java
/* @author: Maryam Umar */
public class LinkedListOM {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListOM(){
 start = null;
 end = null;
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 start = newNode;

 82
 end = newNode;

 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElement(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 size++;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 size++;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();

 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;

 83
 }

 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

OverMethodMain.java
/* @author: Maryam Umar */
public class OverMethodMain {
 public String OverMain() {

 String result = "";
 LinkedListOM ll = new LinkedListOM();
 ll.addElement(1);
 ll.addElement(2);
 ll.addElement(3, 2);
 ll.addElement(4, 2);
 result = result + ll.ConvertToString();
 return result;
 }
}

OverMethodMainTest.java
/* @author: Maryam Umar */
public class OverMethodMainTest {
 public String test1() {
 String result = "";
 OverMethodMain om = new OverMethodMain();
 result = result + om.OverMain();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListOM st = new LinkedListOM();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();

return result;
 }
 public String test3() {
 String result = "";
 LinkedListOM l1 = new LinkedListOM();
 LinkedListOM l2 = new LinkedListOM();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListOM st = new LinkedListOM();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;

 84
 }

 public String test5() {
 String result = "";
 LinkedListOM st = new LinkedListOM();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test6() {
 String result = "";
 LinkedListOM st = new LinkedListOM();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 st.removeNode(3);
 result = result + st.ConvertToString();
 return result;
 }
}

ListNodeOMD.java
/* @author: Maryam Umar */
public class ListNodeOMD {
 protected Object data = null;
 protected ListNodeOMD nextPtr = null;
 public ListNodeOMD(Object obj){
 if(obj == null)
 throw new NullPointerException();
 data = obj;
 }
}

LinkedListOMD.java
/* @author: Maryam Umar */
public class LinkedListOMD {
 protected ListNodeOMD start;
 protected ListNodeOMD end;
 protected int size;
 public LinkedListOMD(){
 start = null;
 end = null;
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNodeOMD newNode = new ListNodeOMD(obj);
 if(start == null){
 start = newNode;
 end = newNode;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public void addElement(double obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNodeOMD newNode = new ListNodeOMD(obj);
 if(start == null){
 start = newNode;
 end = newNode;
 size++;
 }

 85
 else{

 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNodeOMD find(int obj){
 if(obj == 0)
 return null;
 ListNodeOMD temp = start;
 while(temp != null){
 if(temp.data.equals(obj))
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNodeOMD findBefore(int obj){
 if(obj == 0)
 return null;
 ListNodeOMD prevTemp = null;
 ListNodeOMD temp = start;
 while(temp != null){
 if(temp.data.equals(obj))
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElement(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNodeOMD posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNodeOMD newNode = new ListNodeOMD(obj);
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 size++;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 size++;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNodeOMD delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNodeOMD prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNodeOMD tmp = start;

 86
 String result = "";

 while(tmp != end){
 result += tmp.data.toString() + "";
 tmp = tmp.nextPtr;
 }
 result += end.data.toString();

 return result;
 }
}

OverMethodDelete.java
/* @author: Maryam Umar */
public class OverMethodDelete {
 public String OverDeleteMain() {
 String result = "";
 LinkedListOMD ll = new LinkedListOMD();
 ll.addElement(1);
 ll.addElement(2.0);
 ll.addElement(3);
 ll.addElement(4.5);
 result = result + ll.ConvertToString();
 return result;
 }
}

OverMethodDeleteTest.java
/* @author: Maryam Umar */
public class OverMethodDeleteTest {
 public String test1() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2.0);
 st.addElement(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListOMD l1 = new LinkedListOMD();
 LinkedListOMD l2 = new LinkedListOMD();
 l1.addElement(1.5);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5.0);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }

 87
 public String test5() {

 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2, 1);
 result = result + st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test6() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test8() {
 String result = "";
 LinkedListOMD st = new LinkedListOMD();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 st.removeNode(3);
 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListIPC.java
/* @author: Maryam Umar */
public class LinkedListIPC {
 protected ListNode start;
 protected ListNode end;
 protected int size;
 protected int maxSize;
 public LinkedListIPC(){
 start = null;
 end = null;
 size = 0;
 }
 public LinkedListIPC(int size){
 maxSize = size;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(start == null){
 start = newNode;
 end = newNode;
 size++;
 }
 else if(size < maxSize){
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }

 88
 else{

 newNode = new ListNode(-1);
 end.nextPtr = newNode;
 end = newNode;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(posNode == end && size < maxSize){
 posNode.nextPtr = newNode;
 end = newNode.nextPtr;
 size++;
 }
 else if(size < maxSize){
 newNode.nextPtr = posNode.nextPtr;
 posNode.nextPtr = newNode;
 size++;
 }
 else{
 newNode = new ListNode(-1);
 end.nextPtr = newNode;
 end = newNode;
 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }

 89
 size--;

 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StackIPC.java
/* @author: Maryam Umar */
public class StackIPC extends LinkedListIPC {
 protected ListNode end;
 public StackIPC(){
 end = null;
 }
 public StackIPC(int size){
 super(size);
 maxSize = size;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(size == 0){
 start = newNode;
 end = start;
 size++;
 }
 else if(size < maxSize){
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 else{
 newNode = new ListNode(-1);
 end.nextPtr = newNode;
 end = newNode;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }
 public int removeNode(){
 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;

 90
 }

 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

ParentConstructorDeletionIPC.java
/* @author: Maryam Umar */
public class ParentConstructorDeletionIPC {
 public String ParentMain() {
 String result = "";
 StackIPC st = new StackIPC(4);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 result = result + st.removeNode();
 return result;
 }
}

ParentConstructorDeletionTest.java
/* @author: Maryam Umar */
public class ParentConstructorDeletionTest {

public String test1(){
 String result = "";
 LinkedListIPC st = new LinkedListIPC(4);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListIPC st = new LinkedListIPC(2);
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test3() {
 String result = "";
 LinkedListIPC st = new LinkedListIPC();
 st.addElement(1);
 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListIPC l1 = new LinkedListIPC();
 LinkedListIPC l2 = new LinkedListIPC();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);

 91
 l1.addElement(3);

 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackIPC st = new StackIPC(2);
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;
 }

public String test6() {
 String result = "";
 StackIPC st = new StackIPC(1);
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 StackIPC st = new StackIPC(3);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test8() {
 String result = "";
 StackIPC st = new StackIPC(4);
 StackIPC st2 = new StackIPC(2);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;

}
 public String test9() {
 String result = "";
 StackIPC st = new StackIPC(4);
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 st.addElement(5);
 result = result + st.removeNode() + st.ConvertToString();
 return result;
 }
 public String test10() {
 String result = "";
 ParentConstructorDeletionIPC IPC = new ParentConstructorDeletionIPC();
 result = result + IPC.ParentMain();
 return result;
 }
 public String test11() {
 String result = "";
 LinkedListIPC st = new LinkedListIPC();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);

 92
 st.removeNode(1);

 result = result + st.ConvertToString();
 return result;
 }
}

LinkedListIOP.java
/* @author: Maryam Umar */
public class LinkedListIOP {

protected ListNode start;
 protected ListNode end;
 protected int size;
 public LinkedListIOP(){
 start = null;
 end = null;
 }
 public void setSize(){
 size = 0;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(start == null){
 start = newNode;
 end = newNode;
 size = 1;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 }
 }
 public ListNode find(int obj){
 if(obj == 0)
 return null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public ListNode findBefore(int obj){
 if(obj == 0)
 return null;
 ListNode prevTemp = null;
 ListNode temp = start;
 while(temp != null){
 if(temp.data == obj)
 return prevTemp;
 prevTemp = temp;
 temp = temp.nextPtr;
 }
 return null;
 }
 public void addElementAfter(int obj, int pos){
 if(obj == 0 || pos == 0)
 throw new NullPointerException();
 ListNode posNode = find(pos);
 if(posNode == null)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 size++;
 if(posNode == end){
 posNode.nextPtr = newNode;
 end = newNode;
 }
 else{
 newNode.nextPtr = posNode.nextPtr;

 93
 posNode.nextPtr = newNode;

 }
 }
 public int removeNode(int obj){
 if(obj == 0)
 throw new NullPointerException();
 ListNode delNode = find(obj);
 if(delNode == null)
 return -1;
 ListNode prev = findBefore(obj);
 if(delNode == start){
 start = delNode.nextPtr;
 delNode = null;
 }
 else if (delNode == end){
 end = prev;
 delNode = null;
 }
 else{
 prev.nextPtr = delNode.nextPtr;
 delNode = null;
 }
 size--;
 return 0;
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

StackIOP.java
/* @author: Maryam Umar */
public class StackIOP extends LinkedListIOP {
 protected ListNode end; //corresponds to Top of Stack
 public StackIOP(){
 end = null;
 }
 public void setSize(){
 super.setSize();
 size = 5;
 }
 public void addElement(int obj){
 if (obj == 0)
 throw new NullPointerException();
 ListNode newNode = new ListNode(obj);
 if(size == 0){
 start = newNode;
 end = start;
 size++;
 }
 else{
 end.nextPtr = newNode;
 end = newNode;
 size++;
 }
 }
 public ListNode findBefore(){
 ListNode temp = start;
 int ctr = 1;
 while(ctr != (size-1)){
 temp = temp.nextPtr;
 ctr++;
 }
 return temp;
 }

 94
 public int removeNode(){

 ListNode prev = findBefore();
 int value;
 if(size == 0)
 return 0;
 else if(size == 1){
 value = end.data;
 start = null;
 end = null;
 size--;
 return value;
 }
 else{
 value = end.data;
 end = prev;
 size--;
 return value;
 }
 }
 public String ConvertToString(){
 ListNode tmp = start;
 String result = "";
 while(tmp != end){
 result += Integer.toString(tmp.data) + "";
 tmp = tmp.nextPtr;
 }
 result += Integer.toString(end.data);
 return result;
 }
}

MethodPositionChange.java
/* @author: Maryam Umar */
public class MethodPositionChange {

public String MethodMain() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 result = result + st.removeNode();
 return result;
 }
}

MethodPositionChangeTest.java
/* @author: Maryam Umar */
public class MethodPositionChangeTest {
 public String test1() {
 String result = "";
 LinkedListIOP st = new LinkedListIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.ConvertToString();
 return result;
 }
 public String test2() {
 String result = "";
 LinkedListIOP st = new LinkedListIOP();
 st.addElement(1);
 st.addElementAfter(3, 1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;

}
 public String test3() {
 String result = "";
 LinkedListIOP st = new LinkedListIOP();

 95
 st.addElement(1);

 st.addElement(2);
 st.addElementAfter(3, 1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test4() {
 String result = "";
 LinkedListIOP l1 = new LinkedListIOP();
 LinkedListIOP l2 = new LinkedListIOP();
 l1.addElement(1);
 l2.addElement(4);
 l1.addElement(2);
 l2.addElement(5);
 l2.addElement(6);
 l1.addElement(3);
 result = result + l2.ConvertToString();
 result = result + l1.ConvertToString();
 return result;
 }
 public String test5() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElementAfter(2, 1);
 result = result + st.removeNode();
 return result;

}
 public String test6() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test7() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(4);
 result = result + st.removeNode(4);
 st.addElement(4);
 result = result + st.removeNode(4);
 return result;

}
 public String test8() {
 String result = "";
 StackIOP st = new StackIOP();
 StackIOP st2 = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st2.addElement(4);
 st2.addElement(5);
 st2.addElement(6);
 st.removeNode();
 st.removeNode();
 result = result + st.ConvertToString();
 result = result + st2.ConvertToString();
 return result;
 }
 public String test9() {
 String result = "";
 StackIOP ll = new StackIOP();
 ll.setSize();
 ll.addElement(1);
 ll.addElement(2);
 ll.addElement(3);
 result = result + ll.ConvertToString();

 96
 return result;

 }
 public String test10() {
 String result = "";
 MethodPositionChange TCO = new MethodPositionChange();
 result = result + TCO.MethodMain();
 return result;
 }
 public String test11() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(2);
 result = result + st.ConvertToString();
 return result;
 }
 public String test12() {
 String result = "";
 LinkedListIOP st = new LinkedListIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.removeNode(1);
 result = result + st.ConvertToString();
 return result;
 }
 public String test13() {
 String result = "";
 StackIOP st = new StackIOP();
 st.addElement(1);
 st.addElement(2);
 st.addElement(3);
 st.addElement(3);
 st.removeNode();
 result = result + st.ConvertToString();
 return result;
 }
}

 97

REFERENCES

1. Adamopoulos, K., Harman, M. & Hierons, R. “How to Overcome the Equivalent Mutant
Problem and Achieve Tailored Selective Mutation Using Co-evolution”. AAAI Genetic and
Evolutionary Computation Conference 2004 (GECCO 2004). 26-30 June’04, Seattle,
Washington, USA. LNCS 3103, Pages 1338-1349.

2. Hierons, R., Harman, M. & Danicic. S. “Using Program Slicing to Assist in the Detection of
Equivalent Mutants”. Journal of Software Testing, Verification and Reliability, 9(4), 233-
262, 1999.

3. Offutt, J. & Pan, J. “Automatically Detecting Equivalent Mutants and Infeasible Paths”.
The Journal of Software Testing, Verification, and Reliability, Vol 7, No. 3, pages 165--
192, September 1997

4. Offutt, J. & Craft, M. “Using Compiler Optimization Techniques to Detect Equivalent
Mutants”. The Journal of Software Testing, Verification, and Reliability, 4(3):131--154,
September 1994.

5. King, K. N. & Offutt, J. “A Fortran Language System for Mutation-Based Software
Testing”. Software Practice and Experience, 21(7):686--718, July 1991.

6. Ma, Y. S., Offutt, J. & Kwon, Y. R. “MuJava: An Automated Class Mutation System”.
Journal of Software Testing, Verification and Reliability, 15(2):97-133, June 2005.

7. Ma, Y. S., Kwon, Y. R. & Offutt, J. “Inter-Class Mutation Operators for Java”. Proceedings
of the 13th International Symposium on Software Reliability Engineering, IEEE Computer
Society Press, Annapolis MD, November 2002, pp. 352-363.

8. Offutt, A. J., & Untch, R. “Mutation 2000: Uniting The Orthogonal”. In Wong, W. E., ed.:
Mutation Testing for the New Century (proceedings of Mutation 2000), San Jose,
California, USA, Kluwer 2001, pp. 45 –55.

9. Ma, Y. S. & Offutt, J. “Description of Method-level Mutation Operators for Java”.
November 2005.

10. Ma, Y. S. & Offutt, J. “Description of Class-level Mutation Operators for Java”. November
2005.

11. Agrawal, H., DeMillo, R.A., Hathaway, B., Hsu, W., Krauser, E. W., Martin, R.J., Mathur,
A.P., & Spafford, E.H. “Design of Mutant Operators for the C programming Language”.
Software Engineering Research Center, Purdue University. Indiana, March 1989.

12. Alexander, R. T., Bieman, J. M., Ghosh, S. & Ji, B. “Mutation of Java Objects”.
Proceedings of the 13th International Symposium on Software Reliability Engineering
(ISSRE'02). IEEE Computer Society. 2002.

13. Bybro, M. “A Mutation Testing Tool for Java Programs”. August 2003.
14. Bieman, J., Ghosh, S., & Alexander, R. “A Technique for Mutation of Java Objects”.

Proceedings Automated Software Engineering (ASE 2001).
15. Moore, I. “Jester – A JUnit Test Tester”. Proceedings of the 2nd International Conference

on Extreme Programming and Flexible Processes in Software Engineering (XP2001).
16. http://www.xpdeveloper.com/xpdwiki/Wiki.jsp?page=MutationTestingTools
17. http://www.ise.gmu.edu/~offutt/mujava/
18. http://jester.sourceforge.net
19. http://nester.sourceforge.net/

 98

http://www.xpdeveloper.com/xpdwiki/Wiki.jsp?page=MutationTestingTools
http://www.ise.gmu.edu/%7Eoffutt/mujava/
http://jester.sourceforge.net/
http://nester.sourceforge.net/

BIBLIOGRAPHY

1. http://en.wikipedia.org/wiki/Software_testing (accessed 20th july ‘06)
2. Frankl, P. G., Weiss, S. N., & Hu, C. “All-Uses versus Mutation Testing: An

Experimental Comparison of Effectiveness”. The Journal of Systems and Software,
Sept. 1997.

3. Mathur, A. P., & Wong, W. E. “Comparing the Fault Detection Effectiveness of Mutation
and Data Flow Testing: An Empirical Study”. Technical Report SERC-TR-146-P,
Software Engineering Research Center, Purdue University, Indiana, March 1993.

4. Mathur, A. P., & Wong, W. E. “Reducing the Cost of Mutation Testing: An Empirical
Study”. The Journal of Systems and Software. Vol 31, Issue 3. 1995.

5. Untch, R. H., Offutt, A. J. & Harrold, M. J. “Mutation Analysis using Mutant Schemata”.
International Symposium on Software Testing and Analysis. Proceedings of the 1993
ACM SIGSOFT international symposium on Software testing and Analysis.1993.

6. Offutt, A. J., Lee, A., Rothermel, G., Untch, R. & Zapf, C. “An Experimental
Determination of Sufficient Mutation Operators”. ACM Transactions on Software
Engineering, (Baltimore, MD), IEEE Computer Society Press, , pp. 100 –107. May
1993..

7. Offutt, A. J. “A Practical System for Mutation Testing: Help for the common
Programmer”. Twelfth International Conference on Testing Computer Software. Pp 99 –
109. June 1995.

8. Offutt, A. J. & Lee, S. “An Empirical Evaluation of Weak Mutation”. IEEE Transactions
of Software Engineering, Vol 20, Issue 5, pp. 337—345. May 1994.

9. Offutt, A. J., Rothermel, G. & Zapf, C. “An Experimental Evaluation of Selective
Mutation”. International Conference on Software Engineering. Proceedings of the 15th
international conference on Software Engineering. Pp 100 – 107. 1993.

10. Offutt, A. J., Voas, J. & Payne, J. “Mutation Operators for Ada”. Technical Report ISSE-
TR—96-09, Information and Software Systems Engineering, George Mason University.
October 1996.

 99

http://en.wikipedia.org/wiki/Software_testing

	ACKNOWLEDGEMENTS
	 ABSTRACT
	 TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Mutation Testing

	2. LITERATURE REVIEW
	2.1 ‘Do Smarter’ approaches
	2.1.1 Weak Mutation
	2.1.2 Distributed Architectures

	2.2 ‘Do Faster’ approaches
	2.2.1 Schema-based Mutation Analysis
	2.2.2 Separate Compilation Approach

	2.3 ‘Do Fewer’ approaches
	2.3.1 Selective Mutation
	2.3.2 Mutation Sampling

	2.4 Techniques
	2.4.1 Overcoming the Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using Co-evolution [1]
	2.4.2 Using Program Slicing to Assist in the Detection of Equivalent Mutants [2]
	2.4.3 Using Compiler Optimization Techniques to Detect Equivalent Mutants [4]
	2.4.4 Automatically Detecting Equivalent Mutants and Infeasible Paths [3]

	2.5 Tools
	2.5.1 Mothra
	2.5.2 Jester/Nester/Pester
	2.5.3 MuJava

	3. STRATEGY ADOPTED FOR THIS PROJECT
	3.1 MuJava
	3.2 Motivation
	3.3 The Strategy

	4. METHOD-LEVEL MUTATION OPERATORS
	4.1 Arithmetic Operators
	4.2 Relational Operators
	4.3 Conditional Operators
	4.4 Shift Operators
	4.5 Logical Operators
	4.6 Assignment Operators

	5. CLASS-LEVEL MUTATION OPERATORS
	5.1 Encapsulation
	5.2 Inheritance
	5.3 Polymorphism
	5.4 Java-specific Features

	6. EMPIRICAL ANALYSIS
	6.1 Method-level Mutation Operators
	6.1.1 Observations
	6.1.2 An Analysis of the Mutants killed/alive

	6.2 Class-level Mutation Operators
	6.2.1 Observations
	6.2.2 An Analysis of the Mutants killed/alive

	7. AN EVALUATION OF EQUIVALENT MUTANTS
	7.1 Evaluation of Method-level Mutation Operators
	7.1.1 Summary of Method-level Mutation operators
	7.1.2 Scenarios for AOIS

	7.2 Evaluation of Class-level Mutation Operators
	7.2.1 Summary of Class-level Mutation operators
	7.2.2 Scenarios
	7.2.2.1 IHD
	7.2.2.2 IHI
	7.2.2.3 IOR
	7.2.2.4 PRV
	7.2.2.5 JID
	7.2.2.6 JDC

	8. CONCLUSION AND FUTURE WORK
	 APPENDIX A – USER GUIDE for MuJava
	APPENDIX B – Programs written for MuJava (source code)
	 REFERENCES
	 BIBLIOGRAPHY

