
CS483 Design and Analysis of Algorithms

Chapter 7 Linear Programming and Reductions

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours:
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or

by appointments

Course web-site:
http://www.cs.gmu.edu/∼lifei/teaching/cs483 fall09/

Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms” 1 / 25

One of the Top 10 Algorithms in the 20th Century!
1 Formulate a problem using a linear program (Section 7.1)

2 Solve a linear program using the simplex algorithm (Section 7.6)

3 Applications: flows in networks; bipartite matching; zero-sum games (Sections

7.2 - 7.5)

Figure: Father of Linear Programming and Simplex Algorithm: George Dantzig (1914 - 2005)

from http://en.wikipedia.org/wiki/George Dantzig

2 / 25

Warm Up
Definition

Linear programming deals with satisfiability and optimization problems for linear
constraints.

Definition

A linear constraint is a relation of the form

a1 · x1 + . . . + an · xn = b,

or
a1 · x1 + . . . + an · xn ≤ b or a1 · x1 + . . . + an · xn ≥ b,

where the ai and b are constants and the xi are the unknown variables.

Definition

Satisfiability: Given a set of linear constraints, is there a value (x1, . . . , xn) that
satisfies them all?

Definition

Optimization: Given a set of linear constraints, assuming there is a value (x1, . . . , xn)
that satisfies them all, find one which maximizes (or minimizes)

c1 · x1 + . . . + cn · xn. 3 / 25

A Toy Example without Necessity of Calculation – from Eric Schost’s

Slides

Problem

You are allowed to share your time between two companies

1 company C1 pays 1 dollar per hour;

2 company C2 pays 10 dollars per hour.

Knowing that you can only work up to 8 hours per day, what schedule should you go
for?

Of course, work full-time at company C2.

1 Linear formulation:
x1 is the time spent at C1 and x2 the time spent at C2.

2 Constraints:
x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 8.

3 Objective function:
max x1 + 10 · x2.

4 Solution:
x1 = 0, x2 = 8.

4 / 25

Another Example With Geometrical Solution
Problem

Two products are produced: A and B. Per day, we make x1 of A with a profit of 1
each, we make x2 of B with profit 6.
x1 ≤ 200 and x2 ≤ 300, and the total A and B is no more than 400. What is the best
choice of x1 and x2 at maximizing the profit?

Objective: max x1 + 6 · x2

Subject to: x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Definition

The points that satisfy a single inequality are in a half-space.

Definition

The points that satisfy several inequalities are in the intersection of half-spaces. The
intersection of (finitely many) half-spaces is a convex polygon (2D) — the feasible
region.

5 / 25

Exercise

(7.1 of DPV) Consider the following linear program. Plot the feasible region and
identify the optimal solution.

max 5x + 3y

5x − 2y ≥ 0

x + y ≤ 7

x ≤ 5

x ≥ 0

y ≥ 0

6 / 25

Why Bother Thinking an Algorithm?
Problem

Suppose we are managing a network containing A, B, and C. Each connection requires
at least two units of bandwidth, but can be assigned more. Connection A− B pays $3
per unit of bandwidth, and connection B − C and A− C pay $2 and $4, respectively.
Each connection can be routed in two ways, a long path and a short path, or by a
combination. How do we route these connections to maximize our network’s revenue?

We need ask computer to do this ⇒ We need to design an algorithm to solve a linear

program! 7 / 25

Any Algorithmic Observation?

Definition

An extreme point p is impossible to be expressed as a convex combination of two
other distinct points in the convex polygon.

Theorem

The optimal solution, if it exists, is at some extreme point p.

1 A naive algorithm (expensive!):

1 List all the possible vertices.
2 Find the optimal vertex (the one with the maximal value of the objective

function).

3 Try to figure out whether it is a global maximum.

2 Our approach (the simplex algorithm):

1 Start at some extreme point.

2 Pivot from one extreme point to a neighboring one.

3 Repeat until optimal.

8 / 25

Standard Form of LP
1 A maximization ⇔ a minimization problem:
⇔ Multiply the coefficients of the objective function by −1.

2 Equations ⇔ inequalities:
⇒ To turn an inequality constraint like

∑n
i=1 ai · xi ≤ b, introduce a new slack

variable s and use

n∑
i=1

ai · xi + s = b

s ≥ 0

⇐ Rewrite a · x = b as the equivalent pair of constraints a · x ≤ b and a · x ≥ b.

3 The variables (say x) can also be unrestricted in sign:

1 Introduce two non-negative variables x+, x− ≥ 0.

2 Replace x , wherever it occurs in the constraints or the objective function,

by x+ − x−.

A generic LP in Matrix-vector notation:

max −→c T−→x
A−→x ≤

−→
b

−→x ≥ 0

9 / 25

The Simplex Algorithm in Solving a LP

10 / 25

The Simplex Algorithm — Sketch
1 Start at some extreme point v1.

2 Pivot from one extreme point v1 to a neighboring one v2.

1 v2 should increase the value of the objective function.

2 Several strategies are available to select v1.

3 Repeat until optimal — reach a vertex where no improvement is possible.

Correctness?

Complexity analysis?

11 / 25

The Simplex Algorithm — Visualization and Intuition

Definition

Each vertex is the unique point at which some subset of hyper-planes meet ⇒ (a)
Pick a subset of the inequalities. (b) If there is a unique point that satisfies them with
equality, and this point happens to be feasible, then it is a vertex. (c) Each vertex is
specified by a set of n inequalities.

Definition

Two vertices are neighbors if they have n − 1 defining inequalities in common.

12 / 25

The Simplex Algorithm
Consider a generic LP

max −→c T−→x
A−→x ≤

−→
b

−→x ≥ 0

One each iteration, simplex has two tasks:
1 Check whether the current vertex is optimal (and if so, halt).
2 Determine where to move next.

1 Move from the origin by increasing some xi for which ci > 0. Until we hit

some other constraint.

That is, we release the tight constraint xi ≥ 0 and increase xi until some other
inequality, previously loose, now become tight. At that point, we are at a new
vertex.

Remark

Both tasks are easy if the vertex happens to be at the origin. That is, if the vertex is
elsewhere, we will transform the coordinate system to move it to the origin.

Theorem

The objective is optimal when the coordinates of the local cost vector are all zero or
negatives.

13 / 25

Simplex in Action

14 / 25

15 / 25

Complexity of the Simplex

1 Worst case.
One can construct examples where the simplex algorithm visits all vertices
(which can be exponential in the dimension and the number of constraints).

2 Most cases.
The simplex algorithm works very well.

16 / 25

Flows in Networks

17 / 25

Flows in Networks

Definition

Consider a directed graph G = (V ,E); two specific nodes s, t ∈ V . s is the source
and t is the sink. The capacity ce > 0 of an edge e.

Definition

Flow. A particular shipping scheme consisting a variable fe for each edge e of the
network, satisfying the following two properties:

1 0 ≤ fe ≤ ce , ∀e ∈ E .

2 For all nodes u 6= s, t, the amount of flow entering u equals the amount leaving
u (i.e., flows are conservative):∑

(w,u)∈E

fwu =
∑

(u,z)∈E

fuz .

18 / 25

Flows in Networks

Definition

Size of a flow. The total quantity sent from s to t, i.e., the quantity leaving s:

size(f) :=
∑

(s,u)∈E

fsu .

max size(f) :=
∑

(s,u)∈E

fsu

subject to

0 ≤ fe ≤ ce , ∀e ∈ E∑
(w,u)∈E

fwu =
∑

(u,z)∈E

fuz , u 6= s, t
19 / 25

Using the Interpretation of the Simplex Algorithm

1 Start with a zero flow.

2 Repeat: Choose an appropriate path from s to t, and increase flow
along the edges of this path as much as possible.

20 / 25

21 / 25

Using the Interpretation of the Simplex Algorithm
1 Start with a zero flow.
2 Repeat: Choose an appropriate path from s to t, and increase flow along the

edges of this path as much as possible. In each iteration, the simplex looks for
an s − t path whose edge (u, v) can be of two types:

1 (u, v) is in the original network, and is not yet at full capacity. If f is the

current flow, edge (u, v) can handle up to cuv − fuv additional units of

flow.

2 The reverse edge (v , u) is in the original network, and there is some flow

along it. Up to fvu additional units (i.e., canceling all or part of the

existing flow on (v , u)).

Definition

Residual network G f = (V ,E f). G f has exactly the two types of edges listed, with
residual capacity c f :

c f :=

{
cuv − fuv , if (u, v) ∈ E and fuv < cuv

fvu , if (v , u) ∈ E and fvu > 0
(1)

Definition

Augmenting path. An augmenting path p is a simple path from s to t in the residual
network G f .

22 / 25

23 / 25

24 / 25

Flows in Networks

Definition

Cuts. A s − t cut partitions the vertices into two disjoint groups L and R such that
s ∈ L and t ∈ R. Its capacity is the total capacity of the edges from L to R, and it is
an upper bound on any flow from s to t.

Theorem

Max-flow min-cut theorem. The size of the maximum flow in a network equals the
capacity of the smallest (s, t)-cut.

Proof.

?

Theorem

The running time of the augmentation-flow algorithm is O(|V | · |E |2) over an
integer-value graph.

Proof.

?

25 / 25

