
Paths in Graphs

1 Breath-First Search

2 Dijkstra’s Algorithm

3 Shortest Paths in the Presence of Negative Edges

4 Shortest Paths in Directed Acyclic Graphs

1 / 15

Depth-First Search
Remark

Depth-first search readily identifies all the vertices of a graph that can be reached from
a designated starting point. It also finds explicit paths to these vertices, summarized in
its search tree. However, these paths might not be the most economical ones possible.

Problem

Is there a way to find the shortest path in graphs?

2 / 15

Distances
Definition

The distance between two nodes is the length of the shortest path between them

http://www.cse.unsw.edu.au/ billw/Justsearch1.gif
3 / 15

Breath-First Search

1 Initially, the queue Q consists only of s, the one node at distance 0.

2 For each subsequent distance d = 1, 2, . . ., there is a point in time at which Q
contains all the nodes at distance d and nothing else.

3 As these nodes are processed (ejected off the front of the queue), their
as-yet-unseen neighbors are injected into the end of the queue.

Proof.

For each d = 0, 1, 2, . . ., there is a moment at which

1 all nodes at distance ≤ d from s have their distances correctly set;

2 all other nodes have their distances set to ∞; and

3 the queue contains exactly the nodes at distance d .

Theorem

The overall running time of this algorithm is O(|V |+ |E |).
Each vertex is put on the queue exactly once, when it is first encountered, so there are
2 · |V | queue operations.
Over the course of execution, the innermost loop looks at each edge once (in directed
graph) or twice (in undirected graphs), and therefore takes O(|E |) time.

4 / 15

Breath-First Search

5 / 15

Breath-First Search

6 / 15

Analysis of BFS

Theorem

BFS runs in O(m + n) time if the graph is given by its adjacency representation, n is
the number of nodes and m is the number of edges

Proof.

When we consider node u, there are deg(u) incident edges (u, v). Thus, the total
time processing edges is

∑
u∈V deg(u) = 2 ·m

7 / 15

Dijkstra’s Algorithm

Annotate every edge e ∈ E with a length le . If e = (u, v), let le = l(u, v) = luv

Input: Graph G = (V , E) whose edge lengths le are positive integers
Output: The shortest path from s to t

from Wayne’s slides on “Algorithm Design”

8 / 15

Dijkstra’s Algorithm
1 Maintain a set of explored nodes S for which we have determined the shortest

path distance d(u) from s to u
2 Initialize S = {s}, d(s) = 0
3 Repeatedly choose unexplored node v which minimizes

π(v) = min
e=(u,v),u∈S

d(u) + le

4 Add v to S, and set d(v) = π(v)

from Wayne’s slides on “Algorithm Design”
9 / 15

Dijkstra’s Algorithm

Theorem

Dijkstra’s algorithm finds the shortest path from s to any node v: d(v) is the length
of the shortest s ; v path

Proof.

from Wayne’s slides on “Algorithm Design”

Theorem

The overall running time of Dijkstra’s algorithm is O((|V |+ |E |) · log |V |)

10 / 15

Shortest Paths in the Presence of Negative Edges
Simply update all the edges, |V | − 1 times

11 / 15

Shortest Paths in Directed Acyclic Graphs

Definition

OPT (i , v) := length of shortest v ; t path P using at most i edges

Lemma

If OPT (n, v) = OPT (n − 1, v) for all v , then no negative cycles

Proof.

from Wayne’s slides on “Algorithm Design”

12 / 15

Detecting Negative Cycles
Theorem

Negative cycles can be detected in time O(m · n)

Proof.

from Wayne’s slides on “Algorithm Design”
13 / 15

Shortest Paths in Directed Acyclic Graphs

14 / 15

Demo

15 / 15

