Paths in Graphs

@ Breath-First Search

@ Dijkstra’s Algorithm

© Shortest Paths in the Presence of Negative Edges
@ Shortest Paths in Directed Acyclic Graphs

15

Depth-First Search

Remark

Depth-first search readily identifies all the vertices of a graph that can be reached from
a designated starting point. It also finds explicit paths to these vertices, summarized in
its search tree. However, these paths might not be the most economical ones possible.

Problem

Is there a way to find the shortest path in graphs?

Figure 4.1 (a) A simple graph and (b) its depth-first search tree.

(a) (b) O

GESOSNO (
\
o ©®

15

Distances

Definition

The distance between two nodes is the length of the shortest path between them

Depth-first search Breadth-first search

http://www.cse.unsw.edu.au/ billw/Justsearchl.gif

15

Breath-First Search

0 Initially, the queue Q consists only of s, the one node at distance 0.

@ For each subsequent distance d = 1,2,. .., there is a point in time at which Q
contains all the nodes at distance d and nothing else.

© As these nodes are processed (ejected off the front of the queue), their
as-yet-unseen neighbors are injected into the end of the queue.

For each d = 0,1,2,..., there is a moment at which
o all nodes at distance < d from s have their distances correctly set;
e all other nodes have their distances set to co; and

© the queue contains exactly the nodes at distance d.

Theorem

| D

The overall running time of this algorithm is O(|V/| + |E|).

Each vertex is put on the queue exactly once, when it is first encountered, so there are
2 - |V| queue operations.

Over the course of execution, the innermost loop looks at each edge once (in directed
graph) or twice (in undirected graphs), and therefore takes O(|E|) time.

15

Breath-First Search

procedure bfs(G,s)

Input: Graph G =(V,E), directed or undirected; vertex seV
Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:
dist(u) =00

dist(s) =0
Q = [s] (queue containing just s)
while Q is not empty:
u=-eject(Q)
for all edges (u.v) € E:
if dist(v) =o00:
inject(Q,v)
dist(v) =dist(u) +1

Breath-First Search

Qin y |

3 3

Q @

(h)

r ¥ r]
I_m ‘
v W X ¥

/15

Analysis of BFS

BFS runs in O(m + n) time if the graph is given by its adjacency representation, n is
the number of nodes and m is the number of edges

Proof.

When we consider node u, there are deg(u) incident edges (u, v). Thus, the total
time processing edges is »_ o\ deg(u) =2-m O

15

Dijkstra's Algorithm

Annotate every edge e € E with a length le. If e = (u, V), let le = I(u,v) = luv
Input: Graph G = (V, E) whose edge lengths . are positive integers
Output: The shortest path from s to t

9—"@

Cost of path s-2-3-5-1
= 9+23+2+16
= 48.

from Wayne's slides on “Algorithm Design”

15

Dijkstra’s Algorithm

@ Maintain a set of explored nodes S for which we have determined the shortest
path distance d(u) from s to u
@ Initialize S = {s}, d(s) =0

© Repeatedly choose unexplored node v which minimizes

w(v) =

min d(u) + le
e=(u,v),ucsS
@ Add v to S, and set d(v) = 7(v)

from Wayne's slides on “Algorithm Design”

Do
9/15

Dijkstra's Algorithm

Dijkstra’s algorithm finds the shortest path from s to any node v: d(v) is the length
of the shortest s ~ v path

from Wayne's slides on “Algorithm Design”

The overall running time of Dijkstra’s algorithm is O((|V| + |E|) - log | V)

10/15

Shortest Paths in the Presence of Negative Edges

Simply update all the edges, |V| — 1 times

Dijkstra’s algorithm will not work if there are negative edges

Tteration
Node| O | 1|2 |3 | 4|5 /|67
S 0] 0 0 0 0 0 010
A oo | 10 10| b b b 5 | b
B > |oo|oc |10 6|5 |55
C o |oo|oo|oo |11 7| 6|6
D x| o0 |oo ||| 14]10] 9
E co|loo |12 8 7 7 7|7
F ©|lecc| 91919999
G | 8 3 3 o) 3 8 | 8

11/15

Shortest Paths in Directed Acyclic Graphs

Definition

OPT (i, v) := length of shortest v ~ t path P using at most i edges

Lemma

If OPT(n,v) = OPT(n—1,v) for all v, then no negative cycles

Proof.

?’|

c(W)<0

from Wayne's slides on “Algorithm Design”

12 /15

Detecting Negative Cycles

Theorem

Negative cycles can be detected in time O(m - n)

Proof.

18

from Wayne's slides on “Algorithm Design”
13/15

Shortest Paths in Directed Acyclic Graphs

Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs

procedure dag-shortest-paths(G.[l s)

Input: Dag G =(V.E);
edge lengths {l,:e€ E}; vertex seV

Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:
dist(u) =00
prev(u) =nil

dist(s) =0
Linearize G
for each ueV, in linearized order:
for all edges (u,v)e E:
update(u,v)

14 /15

Demo

15/15

