Paths in Graphs

- Breath-First Search
- 2 Dijkstra's Algorithm
- Shortest Paths in the Presence of Negative Edges
- Shortest Paths in Directed Acyclic Graphs

Depth-First Search

Remark

Depth-first search readily identifies all the vertices of a graph that can be reached from a designated starting point. It also finds explicit paths to these vertices, summarized in its search tree. However, these paths might not be the most economical ones possible.

Problem

Is there a way to find the shortest path in graphs?

Figure 4.1 (a) A simple graph and (b) its depth-first search tree.

Distances

Definition

The distance between two nodes is the length of the shortest path between them

http://www.cse.unsw.edu.au/ billw/Justsearch1.gif

3/15

Breath-First Search

- 1 Initially, the queue Q consists only of s, the one node at distance 0.
- **2** For each subsequent distance d = 1, 2, ..., there is a point in time at which Q contains all the nodes at distance d and nothing else.
- S As these nodes are processed (ejected off the front of the queue), their as-yet-unseen neighbors are injected into the end of the queue.

Proof.

For each $d = 0, 1, 2, \ldots$, there is a moment at which

- 1 all nodes at distance $\leq d$ from s have their distances correctly set;
- 2 all other nodes have their distances set to ∞ ; and
- Ithe queue contains exactly the nodes at distance d.

Theorem

The overall running time of this algorithm is O(|V| + |E|).

Each vertex is put on the queue exactly once, when it is first encountered, so there are $2 \cdot |V|$ queue operations.

Over the course of execution, the innermost loop looks at each edge once (in directed graph) or twice (in undirected graphs), and therefore takes O(|E|) time.

Breath-First Search

```
procedure bfs(G, s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
        to the distance from s to u.
for all u \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u, v) \in E:
       if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```

(ロ) (四) (三) (三) (三)

5/15

Breath-First Search

Analysis of BFS

Theorem

BFS runs in O(m + n) time if the graph is given by its adjacency representation, n is the number of nodes and m is the number of edges

Proof.

When we consider node u, there are deg(u) incident edges (u, v). Thus, the total time processing edges is $\sum_{u \in V} deg(u) = 2 \cdot m$

Dijkstra's Algorithm

Annotate every edge $e \in E$ with a *length* I_e . If e = (u, v), let $I_e = I(u, v) = I_{uv}$ **Input**: Graph G = (V, E) whose edge lengths I_e are *positive integers* **Output**: The shortest path from s to t

from Wayne's slides on "Algorithm Design"

Dijkstra's Algorithm

- **()** Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u
- 2 Initialize $S = \{s\}, d(s) = 0$
- \bigcirc Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e=(u,v), u \in S} d(u) + l_e$$

) Add
$$v$$
 to S , and set $d(v)=\pi(v)$

from Wayne's slides on "Algorithm Design"

イロト イロト イヨト イヨト 二日

Dijkstra's Algorithm

Theorem

Dijkstra's algorithm finds the shortest path from s to any node $v\colon d(v)$ is the length of the shortest $s \rightsquigarrow v$ path

Shortest Paths in the Presence of Negative Edges

Simply update *all* the edges, |V| - 1 times

Dijkstra's algorithm will not work if there are negative edges

Node	Iteration							
	0	1	2	3	4	5	6	7
\mathbf{S}	0	0	0	0	0	0	0	0
Α	∞	10	10	5	5	5	5	5
В	∞	∞	∞	10	6	5	5	5
\mathbf{C}	∞	∞	∞	∞	11	7	6	6
D	∞	∞	∞	∞	∞	14	10	9
\mathbf{E}	∞	∞	12	8	7	7	7	7
\mathbf{F}	∞	∞	9	9	9	9	9	9
G	∞	8	8	8	8	8	8	8

Shortest Paths in Directed Acyclic Graphs

Definition

OPT(i, v) := length of shortest $v \rightsquigarrow t$ path P using at most i edges

Lemma

If OPT(n, v) = OPT(n - 1, v) for all v, then no negative cycles

12/15

from Wayne's slides on "Algorithm Design"

Detecting Negative Cycles

Theorem

Negative cycles can be detected in time $O(m \cdot n)$

Proof.

from Wayne's slides on "Algorithm Design"

Shortest Paths in Directed Acyclic Graphs

Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs.

```
procedure dag-shortest-paths (G, l, s)
Input: Dag G = (V, E);
        edge lengths \{l_e : e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
        to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
linearize G
for each u \in V, in linearized order:
   for all edges (u, v) \in E:
      update(u, v)
```

Demo

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 15/15