Paths in Graphs

(1) Breath-First Search
(2) Dijkstra's Algorithm
(3) Shortest Paths in the Presence of Negative Edges

4 Shortest Paths in Directed Acyclic Graphs

Depth-First Search

Remark

Depth-first search readily identifies all the vertices of a graph that can be reached from a designated starting point. It also finds explicit paths to these vertices, summarized in its search tree. However, these paths might not be the most economical ones possible.

Problem

Is there a way to find the shortest path in graphs?

Figure 4.1 (a) A simple graph and (b) its depth-first search tree.
(a)
(b)

Distances

Definition

The distance between two nodes is the length of the shortest path between them

http://www.cse.unsw.edu.au/ billw/Justsearch1.gif

Breath-First Search

(1) Initially, the queue Q consists only of s, the one node at distance 0 .
(2) For each subsequent distance $d=1,2, \ldots$, there is a point in time at which Q contains all the nodes at distance d and nothing else.
(3) As these nodes are processed (ejected off the front of the queue), their as-yet-unseen neighbors are injected into the end of the queue.

Proof.

For each $d=0,1,2, \ldots$, there is a moment at which
(1) all nodes at distance $\leq d$ from s have their distances correctly set;
(2) all other nodes have their distances set to ∞; and
(3) the queue contains exactly the nodes at distance d.

Theorem

The overall running time of this algorithm is $O(|V|+|E|)$.
Each vertex is put on the queue exactly once, when it is first encountered, so there are $2 \cdot|V|$ queue operations.
Over the course of execution, the innermost loop looks at each edge once (in directed graph) or twice (in undirected graphs), and therefore takes $O(|E|)$ time.

Breath-First Search

```
procedure bfs \((G, s)\)
    to the distance from \(s\) to \(u\).
for all \(u \in V\) :
        dist(u) \(=\infty\)
dist \((s)=0\)
\(Q=[s]\) (queue containing just s)
while \(Q\) is not empty:
    \(u=\operatorname{eject}(Q)\)
    for all edges \((u, v) \in E\) :
        if dist \((v)=\infty\) :
        inject \((Q, v)\)
        dist \((v)=\operatorname{dist}(u)+1\)
```

 Input: Graph \(G=(V, E)\), directed or undirected; vertex \(s \in V\)
 Output: For all vertices u reachable from s, dist(u) is set

Breath-First Search

(a)

Q| s |
| :---: |
| 0 |

Q| r | t | x |
| :--- | :--- | :--- |
| 1 | 2 | 2 |

(c)

(g)

Q| u | y |
| :---: | :---: |
| 3 | 3 |

(b)

(d)

Q| t | x | v |
| :--- | :--- | :--- |
| 2 | 2 | 2 |

(f)

Q| v | u | y |
| :---: | :---: | :---: |
| 2 | 3 | 3 |

(h)

Analysis of BFS

Theorem

BFS runs in $O(m+n)$ time if the graph is given by its adjacency representation, n is the number of nodes and m is the number of edges

Proof.

When we consider node u, there are $\operatorname{deg}(u)$ incident edges (u, v). Thus, the total time processing edges is $\sum_{u \in V} \operatorname{deg}(u)=2 \cdot m$

Dijkstra's Algorithm

Annotate every edge $e \in E$ with a length l_{e}. If $e=(u, v)$, let $l_{e}=I(u, v)=I_{u v}$
Input: Graph $G=(V, E)$ whose edge lengths I_{e} are positive integers
Output: The shortest path from s to t

Cost of path s-2-3-5-t
$=9+23+2+16$
$=48$.
from Wayne's slides on "Algorithm Design"

Dijkstra's Algorithm

(1) Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u
(2) Initialize $S=\{s\}, d(s)=0$
(3) Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v), u \in S} d(u)+I_{e}
$$

(4) Add v to S, and set $d(v)=\pi(v)$

from Wayne's slides on "Algorithm Design"

Dijkstra's Algorithm

Theorem

Dijkstra's algorithm finds the shortest path from s to any node $v: d(v)$ is the length of the shortest $s \sim v$ path

Proof.

from Wayne's slides on "Algorithm Design"

Theorem

The overall running time of Dijkstra's algorithm is $O((|V|+|E|) \cdot \log |V|)$

Shortest Paths in the Presence of Negative Edges

Simply update all the edges, $|V|-1$ times
Dijkstra's algorithm will not work if there are negative edges

	Iteration								
Node	0	1	2	3	4	5	6	7	
S	0	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	5	
B	∞	∞	∞	10	6	5	5	5	
C	∞	∞	∞	∞	11	7	6	6	
D	∞	∞	∞	∞	∞	14	10	9	
E	∞	∞	12	8	7	7	7	7	
F	∞	∞	9	9	9	9	9	9	
G	∞	8	8	8	8	8	8	8	

Shortest Paths in Directed Acyclic Graphs

Definition

$\operatorname{OPT}(i, v):=$ length of shortest $v \sim t$ path P using at most i edges

Lemma

If $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all v, then no negative cycles

Proof.

from Wayne's slides on "Algorithm Design"

Detecting Negative Cycles

Theorem

Negative cycles can be detected in time $O(m \cdot n)$

Proof.

from Wayne's slides on "Algorithm Design"

Shortest Paths in Directed Acyclic Graphs

$\underline{\text { Figure } 4.15 \text { A single-source shortest-path algorithm for directed acyclic graphs }}$

```
procedure dag-shortest-paths(G,l,s)
Input: Dag G = (V,E);
    edge lengths {le:e\inE}; vertex s\inV
Output: For all vertices u reachable from s, dist(u) is set
    to the distance from s to u.
for all u\inV:
    dist(u)=\infty
    prev(u)=nil
dist(s)=0
Linearize G
for each }u\inV\mathrm{ , in linearized order:
    for all edges (u,v) \inE:
        update(u,v)
```


Demo

